Noncoherent large ω-precategories
Content created by Fredrik Bakke.
Created on 2025-02-04.
Last modified on 2025-02-04.
{-# OPTIONS --guardedness #-} module wild-category-theory.noncoherent-large-omega-precategories where
Imports
open import category-theory.precategories open import foundation.action-on-identifications-binary-functions open import foundation.dependent-pair-types open import foundation.function-types open import foundation.homotopies open import foundation.identity-types open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.universe-levels open import globular-types.globular-types open import globular-types.large-globular-types open import globular-types.large-reflexive-globular-types open import globular-types.large-transitive-globular-types open import globular-types.reflexive-globular-types open import globular-types.transitive-globular-types open import wild-category-theory.noncoherent-omega-precategories
Idea
It is an important open problem known as the coherence problem to define a fully coherent notion of -category or higher variants in univalent type theory. The subject of wild category theory attempts to recover some of the benefits of -category theory without tackling this problem. We introduce, as one of our basic building blocks in this subject, the notion of a noncoherent large ω-precategory.
A noncoherent large ω-precategory 𝒞
is a structure that attempts at
capturing the structure of a large ω-category to the ’th order. It consists
of in some sense all of the operations and none of the coherence. Thus, it is
defined as a large globular type with
families of -morphisms labeled as “identities”
id-hom : (x : 𝒞ₙ) → 𝒞ₙ₊₁ x x
and a composition operation at every dimension
comp-hom : {x y z : 𝒞ₙ} → 𝒞ₙ₊₁ y z → 𝒞ₙ₊₁ x y → 𝒞ₙ₊₁ x z.
Entirely concretely, we define a noncoherent large ω-precategory¶ to be a reflexive and transitive large globular type. We call the 0-cells the objects, the 1-cells the morphisms and the higher cells the -morphisms. The reflexivities are called the identity morphisms, and the transitivity operations are branded as composition of morphisms.
Definitions
Noncoherent large ω-precategories
record Noncoherent-Large-ω-Precategory (α : Level → Level) (β : Level → Level → Level) : UUω where
The underlying large globular type of a noncoherent large wild precategory:
field large-globular-type-Noncoherent-Large-ω-Precategory : Large-Globular-Type α β
The type of objects of a noncoherent large ω-precategory:
obj-Noncoherent-Large-ω-Precategory : (l : Level) → UU (α l) obj-Noncoherent-Large-ω-Precategory = 0-cell-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory
The globular type of morphisms between two objects in a noncoherent large ω-precategory:
hom-globular-type-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} (x : obj-Noncoherent-Large-ω-Precategory l1) (y : obj-Noncoherent-Large-ω-Precategory l2) → Globular-Type (β l1 l2) (β l1 l2) hom-globular-type-Noncoherent-Large-ω-Precategory = 1-cell-globular-type-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} (x : obj-Noncoherent-Large-ω-Precategory l1) (y : obj-Noncoherent-Large-ω-Precategory l2) → UU (β l1 l2) hom-Noncoherent-Large-ω-Precategory = 1-cell-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory
The globular structure on the type of objects of a noncoherent large ω-precategory:
globular-structure-obj-Noncoherent-Large-ω-Precategory : large-globular-structure β obj-Noncoherent-Large-ω-Precategory globular-structure-obj-Noncoherent-Large-ω-Precategory = large-globular-structure-0-cell-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory
The globular type of 2-morphisms is a noncoherent large ω-precategory:
2-hom-globular-type-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} (f g : hom-Noncoherent-Large-ω-Precategory x y) → Globular-Type (β l1 l2) (β l1 l2) 2-hom-globular-type-Noncoherent-Large-ω-Precategory = 2-cell-globular-type-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory 2-hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} → (f g : hom-Noncoherent-Large-ω-Precategory x y) → UU (β l1 l2) 2-hom-Noncoherent-Large-ω-Precategory = 2-cell-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory
The globular structure on the type of morphisms between two objects in a noncoherent large ω-precategory:
globular-structure-hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} (x : obj-Noncoherent-Large-ω-Precategory l1) (y : obj-Noncoherent-Large-ω-Precategory l2) → globular-structure ( β l1 l2) ( hom-Noncoherent-Large-ω-Precategory x y) globular-structure-hom-Noncoherent-Large-ω-Precategory = globular-structure-1-cell-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory
The globular type of 3-morphisms in a noncoherent large ω-precategory:
3-hom-globular-type-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} {f g : hom-Noncoherent-Large-ω-Precategory x y} (s t : 2-hom-Noncoherent-Large-ω-Precategory f g) → Globular-Type (β l1 l2) (β l1 l2) 3-hom-globular-type-Noncoherent-Large-ω-Precategory = 3-cell-globular-type-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory 3-hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} {f g : hom-Noncoherent-Large-ω-Precategory x y} → 2-hom-Noncoherent-Large-ω-Precategory f g → 2-hom-Noncoherent-Large-ω-Precategory f g → UU (β l1 l2) 3-hom-Noncoherent-Large-ω-Precategory = 3-cell-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory
The globular structure on the type of 2-morphisms in a noncoherent large ω-precategory:
globular-structure-2-hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} (f g : hom-Noncoherent-Large-ω-Precategory x y) → globular-structure ( β l1 l2) ( 2-hom-Noncoherent-Large-ω-Precategory f g) globular-structure-2-hom-Noncoherent-Large-ω-Precategory = globular-structure-2-cell-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory
The structure of identity morphisms in a noncoherent large ω-precategory:
field id-structure-Noncoherent-Large-ω-Precategory : is-reflexive-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory id-hom-Noncoherent-Large-ω-Precategory : {l1 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} → hom-Noncoherent-Large-ω-Precategory x x id-hom-Noncoherent-Large-ω-Precategory {l1} {x} = refl-1-cell-is-reflexive-Large-Globular-Type ( id-structure-Noncoherent-Large-ω-Precategory) ( x) id-structure-hom-globular-type-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} → is-reflexive-Globular-Type ( hom-globular-type-Noncoherent-Large-ω-Precategory x y) id-structure-hom-globular-type-Noncoherent-Large-ω-Precategory = is-reflexive-1-cell-globular-type-is-reflexive-Large-Globular-Type id-structure-Noncoherent-Large-ω-Precategory id-2-hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} (f : hom-Noncoherent-Large-ω-Precategory x y) → 2-hom-Noncoherent-Large-ω-Precategory f f id-2-hom-Noncoherent-Large-ω-Precategory = refl-2-cell-is-reflexive-Large-Globular-Type id-structure-Noncoherent-Large-ω-Precategory id-3-hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} {f g : hom-Noncoherent-Large-ω-Precategory x y} (s : 2-hom-Noncoherent-Large-ω-Precategory f g) → 3-hom-Noncoherent-Large-ω-Precategory s s id-3-hom-Noncoherent-Large-ω-Precategory = refl-3-cell-is-reflexive-Large-Globular-Type id-structure-Noncoherent-Large-ω-Precategory
The structure of composition in a noncoherent large ω-precategory:
field comp-structure-Noncoherent-Large-ω-Precategory : is-transitive-Large-Globular-Type large-globular-type-Noncoherent-Large-ω-Precategory comp-hom-Noncoherent-Large-ω-Precategory : {l1 l2 l3 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} {z : obj-Noncoherent-Large-ω-Precategory l3} → hom-Noncoherent-Large-ω-Precategory y z → hom-Noncoherent-Large-ω-Precategory x y → hom-Noncoherent-Large-ω-Precategory x z comp-hom-Noncoherent-Large-ω-Precategory = comp-1-cell-is-transitive-Large-Globular-Type comp-structure-Noncoherent-Large-ω-Precategory comp-structure-hom-globular-type-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} → is-transitive-Globular-Type ( hom-globular-type-Noncoherent-Large-ω-Precategory x y) comp-structure-hom-globular-type-Noncoherent-Large-ω-Precategory = is-transitive-1-cell-globular-type-is-transitive-Large-Globular-Type comp-structure-Noncoherent-Large-ω-Precategory comp-2-hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} {f g h : hom-Noncoherent-Large-ω-Precategory x y} → 2-hom-Noncoherent-Large-ω-Precategory g h → 2-hom-Noncoherent-Large-ω-Precategory f g → 2-hom-Noncoherent-Large-ω-Precategory f h comp-2-hom-Noncoherent-Large-ω-Precategory = comp-2-cell-is-transitive-Large-Globular-Type comp-structure-Noncoherent-Large-ω-Precategory comp-3-hom-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} {x : obj-Noncoherent-Large-ω-Precategory l1} {y : obj-Noncoherent-Large-ω-Precategory l2} {f g : hom-Noncoherent-Large-ω-Precategory x y} {r s t : 2-hom-Noncoherent-Large-ω-Precategory f g} → 3-hom-Noncoherent-Large-ω-Precategory s t → 3-hom-Noncoherent-Large-ω-Precategory r s → 3-hom-Noncoherent-Large-ω-Precategory r t comp-3-hom-Noncoherent-Large-ω-Precategory = comp-3-cell-is-transitive-Large-Globular-Type comp-structure-Noncoherent-Large-ω-Precategory
The noncoherent ω-precategory of morphisms between two object in a noncoherent large ω-precategory:
hom-noncoherent-ω-precategory-Noncoherent-Large-ω-Precategory : {l1 l2 : Level} (x : obj-Noncoherent-Large-ω-Precategory l1) (y : obj-Noncoherent-Large-ω-Precategory l2) → Noncoherent-ω-Precategory (β l1 l2) (β l1 l2) hom-noncoherent-ω-precategory-Noncoherent-Large-ω-Precategory x y = make-Noncoherent-ω-Precategory ( id-structure-hom-globular-type-Noncoherent-Large-ω-Precategory { x = x} { y}) ( comp-structure-hom-globular-type-Noncoherent-Large-ω-Precategory)
The underlying reflexive globular type of a noncoherent large ω-precategory:
large-reflexive-globular-type-Noncoherent-Large-ω-Precategory : Large-Reflexive-Globular-Type α β large-globular-type-Large-Reflexive-Globular-Type large-reflexive-globular-type-Noncoherent-Large-ω-Precategory = large-globular-type-Noncoherent-Large-ω-Precategory is-reflexive-Large-Reflexive-Globular-Type large-reflexive-globular-type-Noncoherent-Large-ω-Precategory = id-structure-Noncoherent-Large-ω-Precategory
The underlying transitive globular type of a noncoherent large ω-precategory:
large-transitive-globular-type-Noncoherent-Large-ω-Precategory : Large-Transitive-Globular-Type α β large-globular-type-Large-Transitive-Globular-Type large-transitive-globular-type-Noncoherent-Large-ω-Precategory = large-globular-type-Noncoherent-Large-ω-Precategory is-transitive-Large-Transitive-Globular-Type large-transitive-globular-type-Noncoherent-Large-ω-Precategory = comp-structure-Noncoherent-Large-ω-Precategory open Noncoherent-Large-ω-Precategory public
Recent changes
- 2025-02-04. Fredrik Bakke. Rename wild higher categories (#1233).