Homotopy algebra
Content created by Fredrik Bakke, Egbert Rijke and Raymond Baker.
Created on 2024-02-06.
Last modified on 2024-07-23.
module foundation.homotopy-algebra where
Imports
open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.whiskering-homotopies-concatenation
Idea
This file has been created to collect operations on and facts about higher homotopies. The scope of this file is analogous to the scope of the file path algebra, which is about higher identifications.
Definitions
Horizontal concatenation of homotopies
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} {f f' : (x : A) → B x} {g g' : {x : A} → B x → C x} where horizontal-concat-htpy : ({x : A} → g {x} ~ g' {x}) → f ~ f' → g ∘ f ~ g' ∘ f' horizontal-concat-htpy G F = (g ·l F) ∙h (G ·r f') horizontal-concat-htpy' : ({x : A} → g {x} ~ g' {x}) → f ~ f' → g ∘ f ~ g' ∘ f' horizontal-concat-htpy' G F = (G ·r f) ∙h (g' ·l F)
Properties
The two definitions of horizontal concatenation of homotopies agree
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} where coh-right-unit-horizontal-concat-htpy : {f : (x : A) → B x} {g g' : {x : A} → B x → C x} (G : {x : A} → g {x} ~ g' {x}) → horizontal-concat-htpy G (refl-htpy' f) ~ horizontal-concat-htpy' G (refl-htpy' f) coh-right-unit-horizontal-concat-htpy G = inv-htpy-right-unit-htpy coh-left-unit-horizontal-concat-htpy : {f f' : (x : A) → B x} {g : {x : A} → B x → C x} (F : f ~ f') → horizontal-concat-htpy (refl-htpy' g) F ~ horizontal-concat-htpy' (refl-htpy' g) F coh-left-unit-horizontal-concat-htpy F = right-unit-htpy
For the general case, we must construct a coherence of the square
g ·r F
gf -------> gf'
| |
G ·r f | | G ·r f'
∨ ∨
g'f ------> g'f'
g' ·r F
but this is an instance of naturality of G
applied to F
.
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} {C : A → UU l3} {f f' : (x : A) → B x} {g g' : {x : A} → B x → C x} (G : {x : A} → g {x} ~ g' {x}) (F : f ~ f') where coh-horizontal-concat-htpy : horizontal-concat-htpy' G F ~ horizontal-concat-htpy G F coh-horizontal-concat-htpy = nat-htpy G ·r F
Eckmann-Hilton for homotopies
module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} {Z : UU l3} {f g : X → Y} {f' g' : Y → Z} where commutative-right-whisker-left-whisker-htpy : (H' : f' ~ g') (H : f ~ g) → (H' ·r f) ∙h (g' ·l H) ~ (f' ·l H) ∙h (H' ·r g) commutative-right-whisker-left-whisker-htpy H' H x = coh-horizontal-concat-htpy H' H x module _ {l : Level} {X : UU l} where eckmann-hilton-htpy : (H K : id {A = X} ~ id) → (H ∙h K) ~ (K ∙h H) eckmann-hilton-htpy H K = ( inv-htpy ( left-whisker-concat-htpy H (left-unit-law-left-whisker-comp K))) ∙h ( commutative-right-whisker-left-whisker-htpy H K) ∙h ( right-whisker-concat-htpy (left-unit-law-left-whisker-comp K) H)
Recent changes
- 2024-07-23. Raymond Baker. Eckmann-Hilton Updates (#1133).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).