The Whitehead principle for maps
Content created by Fredrik Bakke and Garrett Figueroa.
Created on 2025-07-27.
Last modified on 2025-07-27.
module synthetic-homotopy-theory.whitehead-principle-maps where
Imports
open import foundation.connected-maps open import foundation.connected-types open import foundation.dependent-pair-types open import foundation.fibers-of-maps open import foundation.infinity-connected-maps open import foundation.infinity-connected-types open import foundation.truncation-levels open import foundation.truncations open import foundation.unit-type open import foundation.universe-levels open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.identity-types open import foundation-core.propositions open import synthetic-homotopy-theory.whitehead-principle-types
Idea
The Whitehead principle for maps¶
asserts that ∞-connected maps are
equivalences. I.e., if the
fibers of a map f : X → Y
are
∞-connected, then it is an
equivalence. This principle is also referred to as hypercompleteness and is
not validated in every ∞-topos.
Definition
Whitehead-Principle-Map-Level : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) Whitehead-Principle-Map-Level l1 l2 = ( X : UU l1) → (Y : UU l2) → (f : X → Y) → is-∞-connected-map f → is-equiv f Whitehead-Principle-Map : UUω Whitehead-Principle-Map = {l1 l2 : Level} → Whitehead-Principle-Map-Level l1 l2
Properties
The Whitehead principle for maps implies the Whitehead principle for types
Whitehead-Principle-Maps-implies-Types : Whitehead-Principle-Map → Whitehead-Principle Whitehead-Principle-Maps-implies-Types WP X is-∞-conn-X = is-contr-equiv-unit eq where eq : X ≃ unit pr1 eq = terminal-map X pr2 eq = WP X unit (terminal-map X) ( λ x → is-∞-connected-equiv ( equiv-fiber-terminal-map star) is-∞-conn-X)
The Whitehead principle for types implies the Whitehead principle for maps
Whitehead-Principle-Types-implies-Maps : Whitehead-Principle → Whitehead-Principle-Map Whitehead-Principle-Types-implies-Maps WP X Y f is-∞-conn-f = is-equiv-is-contr-map is-contr-map-f where is-contr-map-f : is-contr-map f is-contr-map-f y = WP (fiber f y) (λ x → is-∞-conn-f y x)
External links
- hypercomplete object on Lab
- Whitehead theorem on Wikipedia
References
For the equivalent concept in the ∞-categorical semantics of homotopy type theory, cf. §6.5.2 of Lurie’s Higher Topos Theory [Lur09].
- [Lur09]
- Jacob Lurie. Higher Topos Theory. Princeton University Press, 2009. ISBN 9780691140490. URL: https://www.math.ias.edu/~lurie/papers/highertopoi.pdf.
Recent changes
- 2025-07-27. Garrett Figueroa and Fredrik Bakke. The Whitehead principle (#1453).