Intersections of ideals of semirings
Content created by Fredrik Bakke, Egbert Rijke and Maša Žaucer.
Created on 2023-06-08.
Last modified on 2023-06-09.
module ring-theory.intersections-ideals-semirings where
Imports
open import foundation.dependent-pair-types open import foundation.intersections-subtypes open import foundation.universe-levels open import ring-theory.ideals-semirings open import ring-theory.semirings open import ring-theory.subsets-semirings
Idea
The intersection of two ideals of a semiring consists of the elements contained in both of them.
Definition
module _ {l1 l2 l3 : Level} (R : Semiring l1) (A : ideal-Semiring l2 R) (B : ideal-Semiring l3 R) where subset-intersection-ideal-Semiring : subset-Semiring (l2 ⊔ l3) R subset-intersection-ideal-Semiring = intersection-subtype ( subset-ideal-Semiring R A) ( subset-ideal-Semiring R B) contains-zero-intersection-ideal-Semiring : contains-zero-subset-Semiring R subset-intersection-ideal-Semiring pr1 contains-zero-intersection-ideal-Semiring = contains-zero-ideal-Semiring R A pr2 contains-zero-intersection-ideal-Semiring = contains-zero-ideal-Semiring R B is-closed-under-addition-intersection-ideal-Semiring : is-closed-under-addition-subset-Semiring R subset-intersection-ideal-Semiring pr1 (is-closed-under-addition-intersection-ideal-Semiring x y H K) = is-closed-under-addition-ideal-Semiring R A x y (pr1 H) (pr1 K) pr2 (is-closed-under-addition-intersection-ideal-Semiring x y H K) = is-closed-under-addition-ideal-Semiring R B x y (pr2 H) (pr2 K) is-closed-under-left-multiplication-intersection-ideal-Semiring : is-closed-under-left-multiplication-subset-Semiring R subset-intersection-ideal-Semiring pr1 (is-closed-under-left-multiplication-intersection-ideal-Semiring x y H) = is-closed-under-left-multiplication-ideal-Semiring R A x y (pr1 H) pr2 (is-closed-under-left-multiplication-intersection-ideal-Semiring x y H) = is-closed-under-left-multiplication-ideal-Semiring R B x y (pr2 H) is-closed-under-right-multiplication-intersection-ideal-Semiring : is-closed-under-right-multiplication-subset-Semiring R subset-intersection-ideal-Semiring pr1 (is-closed-under-right-multiplication-intersection-ideal-Semiring x y H) = is-closed-under-right-multiplication-ideal-Semiring R A x y (pr1 H) pr2 (is-closed-under-right-multiplication-intersection-ideal-Semiring x y H) = is-closed-under-right-multiplication-ideal-Semiring R B x y (pr2 H)
Recent changes
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).