Maps local at maps
Content created by Fredrik Bakke.
Created on 2024-11-19.
Last modified on 2024-11-19.
module orthogonal-factorization-systems.maps-local-at-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-morphisms-arrows open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.equivalences-arrows open import foundation.fibers-of-maps open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-function-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-fibers-of-maps open import foundation.global-subuniverses open import foundation.homotopies open import foundation.identity-types open import foundation.postcomposition-functions open import foundation.precomposition-functions open import foundation.propositions open import foundation.pullbacks open import foundation.retracts-of-maps open import foundation.unit-type open import foundation.universal-property-family-of-fibers-of-maps open import foundation.universe-levels open import orthogonal-factorization-systems.families-of-types-local-at-maps open import orthogonal-factorization-systems.orthogonal-maps open import orthogonal-factorization-systems.pullback-hom open import orthogonal-factorization-systems.types-local-at-maps
Idea
A map g : X → Y
is said to be
local¶ at
f : A → B
, or
f
-local¶, if
all its fibers are
f
-local types.
Definition
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-local-map : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-local-map = is-local-family f (fiber g) is-property-is-local-map : is-prop is-local-map is-property-is-local-map = is-property-is-local-family f (fiber g) is-local-map-Prop : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-local-map-Prop = is-local-family-Prop f (fiber g)
A type B
is f
-local if and only if the terminal map B → unit
is f
-local
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {Y : UU l3} (f : A → B) where is-local-is-local-terminal-map : is-local-map f (terminal-map Y) → is-local f Y is-local-is-local-terminal-map H = is-local-equiv f (inv-equiv-fiber-terminal-map star) (H star) is-local-terminal-map-is-local : is-local f Y → is-local-map f (terminal-map Y) is-local-terminal-map-is-local H u = is-local-equiv f (equiv-fiber-terminal-map u) H
A map is f
-local if it is f
-orthogonal
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-local-map-is-orthogonal-pullback-condition : is-orthogonal-pullback-condition f g → is-local-map f g is-local-map-is-orthogonal-pullback-condition G y = is-local-is-orthogonal-pullback-condition-terminal-map f ( is-orthogonal-pullback-condition-right-base-change f g ( terminal-map (fiber g y)) ( fiber-cartesian-hom-arrow g y) ( G)) is-local-map-is-orthogonal : is-orthogonal f g → is-local-map f g is-local-map-is-orthogonal G y = is-local-is-orthogonal-terminal-map f ( is-orthogonal-right-base-change f g ( terminal-map (fiber g y)) ( fiber-cartesian-hom-arrow g y) ( G))
f
-local maps are closed under base change
Maps local at f
are closed under base change.
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} {f : A → B} {g : C → D} {g' : E → F} where is-local-map-base-change : is-local-map f g → cartesian-hom-arrow g' g → is-local-map f g' is-local-map-base-change G α d = is-local-equiv f ( equiv-fibers-cartesian-hom-arrow g' g α d) ( G (map-codomain-cartesian-hom-arrow g' g α d))
f
-local maps are closed under retracts
module _ {l1 l2 l3 l4 l5 l6 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} {E : UU l5} {F : UU l6} {f : A → B} {g : C → D} {g' : E → F} where is-local-retract-map : is-local-map f g → g' retract-of-map g → is-local-map f g' is-local-retract-map G R d = is-local-retract ( retract-fiber-retract-map g' g R d) ( G (map-codomain-inclusion-retract-map g' g R d))
See also
Recent changes
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).