Unions of subtypes
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides and Maša Žaucer.
Created on 2022-09-09.
Last modified on 2025-01-07.
module foundation.unions-subtypes where
Imports
open import foundation.decidable-subtypes open import foundation.dependent-pair-types open import foundation.disjunction open import foundation.large-locale-of-subtypes open import foundation.powersets open import foundation.propositional-truncations open import foundation.universe-levels open import foundation-core.subtypes open import logic.de-morgan-propositions open import logic.de-morgan-subtypes open import logic.double-negation-stable-subtypes open import order-theory.least-upper-bounds-large-posets
Idea
The union of two subtypes A
and B
is the
subtype that contains the elements that are in A
or in B
.
Definition
Unions of subtypes
module _ {l l1 l2 : Level} {X : UU l} where union-subtype : subtype l1 X → subtype l2 X → subtype (l1 ⊔ l2) X union-subtype P Q x = (P x) ∨ (Q x)
Unions of decidable subtypes
union-decidable-subtype : decidable-subtype l1 X → decidable-subtype l2 X → decidable-subtype (l1 ⊔ l2) X union-decidable-subtype P Q x = disjunction-Decidable-Prop (P x) (Q x)
Unions of De Morgan subtypes
union-de-morgan-subtype : de-morgan-subtype l1 X → de-morgan-subtype l2 X → de-morgan-subtype (l1 ⊔ l2) X union-de-morgan-subtype P Q x = disjunction-De-Morgan-Prop (P x) (Q x)
Unions of families of subtypes
module _ {l1 l2 l3 : Level} {X : UU l1} where union-family-of-subtypes : {I : UU l2} (A : I → subtype l3 X) → subtype (l2 ⊔ l3) X union-family-of-subtypes = sup-powerset-Large-Locale is-least-upper-bound-union-family-of-subtypes : {I : UU l2} (A : I → subtype l3 X) → is-least-upper-bound-family-of-elements-Large-Poset ( powerset-Large-Poset X) ( A) ( union-family-of-subtypes A) is-least-upper-bound-union-family-of-subtypes = is-least-upper-bound-sup-powerset-Large-Locale
Properties
The union of families of subtypes preserves indexed inclusion
module _ {l1 l2 l3 l4 : Level} {X : UU l1} {I : UU l2} (A : I → subtype l3 X) (B : I → subtype l4 X) where preserves-order-union-family-of-subtypes : ((i : I) → A i ⊆ B i) → union-family-of-subtypes A ⊆ union-family-of-subtypes B preserves-order-union-family-of-subtypes H x p = apply-universal-property-trunc-Prop p ( union-family-of-subtypes B x) ( λ (i , q) → unit-trunc-Prop (i , H i x q))
Recent changes
- 2025-01-07. Fredrik Bakke. Logic (#1226).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-12-12. Fredrik Bakke. Some minor refactoring surrounding Dedekind reals (#983).
- 2023-10-16. Fredrik Bakke and Egbert Rijke. Sequential limits (#839).
- 2023-06-09. Fredrik Bakke. Remove unused imports (#648).