The positive, negative, and nonnegative rational numbers
Content created by Louis Wasserman and Fredrik Bakke.
Created on 2025-04-25.
Last modified on 2025-10-07.
module elementary-number-theory.positive-and-negative-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.nonpositive-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.functoriality-coproduct-types open import foundation.identity-types open import foundation.universe-levels
Idea
In this file, we outline basic relations between negative, nonnegative, positive, and nonpositive rational numbers.
Properties
Dichotomies
A rational number is either negative or nonnegative
abstract decide-is-negative-is-nonnegative-ℚ : (q : ℚ) → is-negative-ℚ q + is-nonnegative-ℚ q decide-is-negative-is-nonnegative-ℚ q = map-coproduct ( is-negative-le-zero-ℚ q) ( is-nonnegative-leq-zero-ℚ q) ( decide-le-leq-ℚ q zero-ℚ)
A rational number is either positive or nonpositive
abstract decide-is-positive-is-nonpositive-ℚ : (q : ℚ) → is-positive-ℚ q + is-nonpositive-ℚ q decide-is-positive-is-nonpositive-ℚ q = map-coproduct ( is-positive-le-zero-ℚ q) ( is-nonpositive-leq-zero-ℚ q) ( decide-le-leq-ℚ zero-ℚ q)
Trichotomies
A rational number is either negative, zero, or positive
abstract trichotomy-sign-ℚ : {l : Level} {A : UU l} (x : ℚ) → ( is-negative-ℚ x → A) → ( x = zero-ℚ → A) → ( is-positive-ℚ x → A) → A trichotomy-sign-ℚ x neg zero pos = trichotomy-le-ℚ ( x) ( zero-ℚ) ( λ x<0 → neg (is-negative-le-zero-ℚ x x<0)) ( zero) ( λ 0<x → pos (is-positive-le-zero-ℚ x 0<x))
Inequalities
A negative rational number is less than a nonnegative rational number
abstract le-negative-nonnegative-ℚ : (p : ℚ⁻) (q : ℚ⁰⁺) → le-ℚ (rational-ℚ⁻ p) (rational-ℚ⁰⁺ q) le-negative-nonnegative-ℚ (p , neg-p) (q , nonneg-q) = concatenate-le-leq-ℚ p zero-ℚ q ( le-zero-is-negative-ℚ p neg-p) ( leq-zero-is-nonnegative-ℚ q nonneg-q)
A nonpositive rational number is less than a positive rational number
abstract le-nonpositive-positive-ℚ : (p : ℚ⁰⁻) (q : ℚ⁺) → le-ℚ (rational-ℚ⁰⁻ p) (rational-ℚ⁺ q) le-nonpositive-positive-ℚ (p , nonpos-p) (q , pos-q) = concatenate-leq-le-ℚ p zero-ℚ q ( leq-zero-is-nonpositive-ℚ p nonpos-p) ( le-zero-is-positive-ℚ q pos-q)
If p < q
and p
is nonnegative, then q
is positive
abstract is-positive-le-ℚ⁰⁺ : (p : ℚ⁰⁺) (q : ℚ) → le-ℚ (rational-ℚ⁰⁺ p) q → is-positive-ℚ q is-positive-le-ℚ⁰⁺ (p , nonneg-p) q p<q = is-positive-le-zero-ℚ ( q) ( concatenate-leq-le-ℚ _ _ _ (leq-zero-is-nonnegative-ℚ p nonneg-p) p<q)
If p < q
and q
is nonpositive, then p
is negative
abstract is-negative-le-ℚ⁰⁻ : (q : ℚ⁰⁻) (p : ℚ) → le-ℚ p (rational-ℚ⁰⁻ q) → is-negative-ℚ p is-negative-le-ℚ⁰⁻ (q , nonpos-q) p p<q = is-negative-le-zero-ℚ ( p) ( concatenate-le-leq-ℚ p q zero-ℚ ( p<q) ( leq-zero-is-nonpositive-ℚ q nonpos-q))
Recent changes
- 2025-10-07. Louis Wasserman. Multiplication of interior intervals in the rational numbers (#1561).
- 2025-08-14. Fredrik Bakke. Dedekind finiteness of various notions of finite type (#1422).
- 2025-04-25. Louis Wasserman. Arithmetic-geometric mean inequality on the rational numbers (#1406).