The positive, negative, and nonnegative rational numbers
Content created by Louis Wasserman.
Created on 2025-04-25.
Last modified on 2025-04-25.
module elementary-number-theory.positive-and-negative-rational-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.negative-rational-numbers open import elementary-number-theory.nonnegative-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.coproduct-types open import foundation.functoriality-coproduct-types open import foundation.identity-types open import foundation.universe-levels
Idea
In this file, we outline basic relations between negative, nonnegative, and positive rational numbers.
Properties
Dichotomies
A rational number is either negative or nonnegative
abstract decide-is-negative-is-nonnegative-ℚ : (q : ℚ) → is-negative-ℚ q + is-nonnegative-ℚ q decide-is-negative-is-nonnegative-ℚ q = map-coproduct ( is-negative-le-zero-ℚ q) ( is-nonnegative-leq-zero-ℚ q) ( decide-le-leq-ℚ q zero-ℚ)
Trichotomies
A rational number is either negative, zero, or positive
abstract trichotomy-sign-ℚ : {l : Level} {A : UU l} (x : ℚ) → ( is-negative-ℚ x → A) → ( Id x zero-ℚ → A) → ( is-positive-ℚ x → A) → A trichotomy-sign-ℚ x neg zero pos = trichotomy-le-ℚ ( x) ( zero-ℚ) ( λ x<0 → neg (is-negative-le-zero-ℚ x x<0)) ( zero) ( λ 0<x → pos (is-positive-le-zero-ℚ x 0<x))
Recent changes
- 2025-04-25. Louis Wasserman. Arithmetic-geometric mean inequality on the rational numbers (#1406).