Large subsuplattices

Content created by Egbert Rijke, Fredrik Bakke, Julian KG, Maša Žaucer, fernabnor, Gregor Perčič and louismntnu.

Created on 2023-05-12.
Last modified on 2024-04-11.

module order-theory.large-subsuplattices where
Imports
open import foundation.large-binary-relations
open import foundation.universe-levels

open import order-theory.large-posets
open import order-theory.large-subposets
open import order-theory.large-suplattices

Idea

A large subsuplattice of a large suplattice is a large subposet which is closed under suprema.

Definition

module _
  {α γ : Level  Level} {β : Level  Level  Level} {δ : Level}
  (L : Large-Suplattice α β δ)
  where

  is-closed-under-sup-Large-Subposet :
    Large-Subposet γ (large-poset-Large-Suplattice L)  UUω
  is-closed-under-sup-Large-Subposet S =
    {l1 l2 : Level} {I : UU l1} (x : I  type-Large-Suplattice L l2) 
    ((i : I)  is-in-Large-Subposet (large-poset-Large-Suplattice L) S (x i)) 
    is-in-Large-Subposet
      ( large-poset-Large-Suplattice L)
      ( S)
      ( sup-Large-Suplattice L x)

record
  Large-Subsuplattice
  {α : Level  Level} {β : Level  Level  Level} {δ : Level}
  (γ : Level  Level)
  (L : Large-Suplattice α β δ) :
  UUω
  where
  field
    large-subposet-Large-Subsuplattice :
      Large-Subposet γ (large-poset-Large-Suplattice L)
    is-closed-under-sup-Large-Subsuplattice :
      is-closed-under-sup-Large-Subposet L (large-subposet-Large-Subsuplattice)

open Large-Subsuplattice public

module _
  {α γ : Level  Level} {β : Level  Level  Level} {δ : Level}
  (P : Large-Suplattice α β δ) (S : Large-Subsuplattice γ P)
  where

  large-poset-Large-Subsuplattice :
    Large-Poset  l  α l  γ l)  l1 l2  β l1 l2)
  large-poset-Large-Subsuplattice =
    large-poset-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  is-in-Large-Subsuplattice :
    {l1 : Level}  type-Large-Suplattice P l1  UU (γ l1)
  is-in-Large-Subsuplattice =
    is-in-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  type-Large-Subsuplattice : (l1 : Level)  UU (α l1  γ l1)
  type-Large-Subsuplattice =
    type-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  leq-prop-Large-Subsuplattice :
    Large-Relation-Prop β type-Large-Subsuplattice
  leq-prop-Large-Subsuplattice =
    leq-prop-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  leq-Large-Subsuplattice :
    Large-Relation β type-Large-Subsuplattice
  leq-Large-Subsuplattice =
    leq-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  is-prop-leq-Large-Subsuplattice :
    is-prop-Large-Relation type-Large-Subsuplattice leq-Large-Subsuplattice
  is-prop-leq-Large-Subsuplattice =
    is-prop-leq-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  refl-leq-Large-Subsuplattice :
    is-reflexive-Large-Relation
      ( type-Large-Subsuplattice)
      ( leq-Large-Subsuplattice)
  refl-leq-Large-Subsuplattice =
    refl-leq-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  transitive-leq-Large-Subsuplattice :
    is-transitive-Large-Relation
      ( type-Large-Subsuplattice)
      ( leq-Large-Subsuplattice)
  transitive-leq-Large-Subsuplattice =
    transitive-leq-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  antisymmetric-leq-Large-Subsuplattice :
    is-antisymmetric-Large-Relation
      ( type-Large-Subsuplattice)
      ( leq-Large-Subsuplattice)
  antisymmetric-leq-Large-Subsuplattice =
    antisymmetric-leq-Large-Subposet
      ( large-poset-Large-Suplattice P)
      ( large-subposet-Large-Subsuplattice S)

  is-closed-under-sim-Large-Subsuplattice :
    {l1 l2 : Level}
    (x : type-Large-Suplattice P l1)
    (y : type-Large-Suplattice P l2) 
    leq-Large-Suplattice P x y 
    leq-Large-Suplattice P y x 
    is-in-Large-Subsuplattice x  is-in-Large-Subsuplattice y
  is-closed-under-sim-Large-Subsuplattice =
    is-closed-under-sim-Large-Subposet
      ( large-subposet-Large-Subsuplattice S)

Recent changes