Large subsuplattices
Content created by Egbert Rijke, Fredrik Bakke, Julian KG, Maša Žaucer, fernabnor, Gregor Perčič and louismntnu.
Created on 2023-05-12.
Last modified on 2024-04-11.
module order-theory.large-subsuplattices where
Imports
open import foundation.large-binary-relations open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-subposets open import order-theory.large-suplattices
Idea
A large subsuplattice of a large suplattice is a large subposet which is closed under suprema.
Definition
module _ {α γ : Level → Level} {β : Level → Level → Level} {δ : Level} (L : Large-Suplattice α β δ) where is-closed-under-sup-Large-Subposet : Large-Subposet γ (large-poset-Large-Suplattice L) → UUω is-closed-under-sup-Large-Subposet S = {l1 l2 : Level} {I : UU l1} (x : I → type-Large-Suplattice L l2) → ((i : I) → is-in-Large-Subposet (large-poset-Large-Suplattice L) S (x i)) → is-in-Large-Subposet ( large-poset-Large-Suplattice L) ( S) ( sup-Large-Suplattice L x) record Large-Subsuplattice {α : Level → Level} {β : Level → Level → Level} {δ : Level} (γ : Level → Level) (L : Large-Suplattice α β δ) : UUω where field large-subposet-Large-Subsuplattice : Large-Subposet γ (large-poset-Large-Suplattice L) is-closed-under-sup-Large-Subsuplattice : is-closed-under-sup-Large-Subposet L (large-subposet-Large-Subsuplattice) open Large-Subsuplattice public module _ {α γ : Level → Level} {β : Level → Level → Level} {δ : Level} (P : Large-Suplattice α β δ) (S : Large-Subsuplattice γ P) where large-poset-Large-Subsuplattice : Large-Poset (λ l → α l ⊔ γ l) (λ l1 l2 → β l1 l2) large-poset-Large-Subsuplattice = large-poset-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) is-in-Large-Subsuplattice : {l1 : Level} → type-Large-Suplattice P l1 → UU (γ l1) is-in-Large-Subsuplattice = is-in-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) type-Large-Subsuplattice : (l1 : Level) → UU (α l1 ⊔ γ l1) type-Large-Subsuplattice = type-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) leq-prop-Large-Subsuplattice : Large-Relation-Prop β type-Large-Subsuplattice leq-prop-Large-Subsuplattice = leq-prop-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) leq-Large-Subsuplattice : Large-Relation β type-Large-Subsuplattice leq-Large-Subsuplattice = leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) is-prop-leq-Large-Subsuplattice : is-prop-Large-Relation type-Large-Subsuplattice leq-Large-Subsuplattice is-prop-leq-Large-Subsuplattice = is-prop-leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) refl-leq-Large-Subsuplattice : is-reflexive-Large-Relation ( type-Large-Subsuplattice) ( leq-Large-Subsuplattice) refl-leq-Large-Subsuplattice = refl-leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) transitive-leq-Large-Subsuplattice : is-transitive-Large-Relation ( type-Large-Subsuplattice) ( leq-Large-Subsuplattice) transitive-leq-Large-Subsuplattice = transitive-leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) antisymmetric-leq-Large-Subsuplattice : is-antisymmetric-Large-Relation ( type-Large-Subsuplattice) ( leq-Large-Subsuplattice) antisymmetric-leq-Large-Subsuplattice = antisymmetric-leq-Large-Subposet ( large-poset-Large-Suplattice P) ( large-subposet-Large-Subsuplattice S) is-closed-under-sim-Large-Subsuplattice : {l1 l2 : Level} (x : type-Large-Suplattice P l1) (y : type-Large-Suplattice P l2) → leq-Large-Suplattice P x y → leq-Large-Suplattice P y x → is-in-Large-Subsuplattice x → is-in-Large-Subsuplattice y is-closed-under-sim-Large-Subsuplattice = is-closed-under-sim-Large-Subposet ( large-subposet-Large-Subsuplattice S)
Recent changes
- 2024-04-11. Fredrik Bakke. Strict symmetrizations of binary relations (#1025).
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-06-25. Fredrik Bakke, louismntnu, fernabnor, Egbert Rijke and Julian KG. Posets are categories, and refactor binary relations (#665).
- 2023-06-08. Egbert Rijke, Maša Žaucer and Fredrik Bakke. The Zariski locale of a commutative ring (#619).