Displayed large reflexive graphs
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2024-03-24.
Last modified on 2024-12-03.
module graph-theory.displayed-large-reflexive-graphs where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import graph-theory.large-reflexive-graphs open import graph-theory.reflexive-graphs
Idea
A displayed large reflexive graph¶ H
a over a base
large reflexive graph G
is the
structure of a dependent large reflexive graph over
G
. It consists of
-
A family of vertices over the vertices of
G
. -
A family of dependent edges over the edges of
G
. More concretely, for every edgee : x → y
inG
andx'
inH
overx
, andy'
overx
, a type of edges fromx'
toy'
overe
:x' ·········> y' ∋ H ↧ x ----------> y ∋ G. e
-
A family of reflexivity edges
refl : x' → x'
over every reflexivity edge inG
.
Definitions
Displayed large reflexive graphs
record Displayed-Large-Reflexive-Graph {α' : Level → Level} {β' : Level → Level → Level} (α : Level → Level) (β : Level → Level → Level) (G : Large-Reflexive-Graph α' β') : UUω where field vertex-Displayed-Large-Reflexive-Graph : {l : Level} (x : vertex-Large-Reflexive-Graph G l) → UU (α l) edge-Displayed-Large-Reflexive-Graph : {l1 l2 : Level} {x : vertex-Large-Reflexive-Graph G l1} {y : vertex-Large-Reflexive-Graph G l2} (f : edge-Large-Reflexive-Graph G x y) (x' : vertex-Displayed-Large-Reflexive-Graph x) (y' : vertex-Displayed-Large-Reflexive-Graph y) → UU (β l1 l2) refl-Displayed-Large-Reflexive-Graph : {l : Level} {x : vertex-Large-Reflexive-Graph G l} (x' : vertex-Displayed-Large-Reflexive-Graph x) → edge-Displayed-Large-Reflexive-Graph ( refl-Large-Reflexive-Graph G x) ( x') ( x') open Displayed-Large-Reflexive-Graph public
The total large reflexive graph of a displayed large reflexive graph
module _ {α1 α2 : Level → Level} {β1 β2 : Level → Level → Level} {G : Large-Reflexive-Graph α1 β1} (H : Displayed-Large-Reflexive-Graph α2 β2 G) where vertex-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph : (l : Level) → UU (α1 l ⊔ α2 l) vertex-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph l = Σ ( vertex-Large-Reflexive-Graph G l) ( vertex-Displayed-Large-Reflexive-Graph H) edge-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph : {l1 l2 : Level} → vertex-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph l1 → vertex-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph l2 → UU (β1 l1 l2 ⊔ β2 l1 l2) edge-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph ( x , x') (y , y') = Σ ( edge-Large-Reflexive-Graph G x y) ( λ e → edge-Displayed-Large-Reflexive-Graph H e x' y') refl-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph : {l : Level} (x : vertex-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph l) → edge-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph x x refl-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph (x , x') = ( refl-Large-Reflexive-Graph G x , refl-Displayed-Large-Reflexive-Graph H x') total-large-reflexive-graph-Displayed-Large-Reflexive-Graph : Large-Reflexive-Graph (λ l → α1 l ⊔ α2 l) (λ l1 l2 → β1 l1 l2 ⊔ β2 l1 l2) vertex-Large-Reflexive-Graph total-large-reflexive-graph-Displayed-Large-Reflexive-Graph = vertex-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph edge-Large-Reflexive-Graph total-large-reflexive-graph-Displayed-Large-Reflexive-Graph = edge-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph refl-Large-Reflexive-Graph total-large-reflexive-graph-Displayed-Large-Reflexive-Graph = refl-total-large-reflexive-graph-Displayed-Large-Reflexive-Graph
The fiber reflexive graph of a displayed large reflexive graph over a vertex
module _ {α1 α2 : Level → Level} {β1 β2 : Level → Level → Level} {G : Large-Reflexive-Graph α1 β1} (H : Displayed-Large-Reflexive-Graph α2 β2 G) {l : Level} (x : vertex-Large-Reflexive-Graph G l) where fiber-vertex-reflexive-graph-Displayed-Large-Reflexive-Graph : Reflexive-Graph (α2 l) (β2 l l) pr1 (pr1 fiber-vertex-reflexive-graph-Displayed-Large-Reflexive-Graph) = vertex-Displayed-Large-Reflexive-Graph H x pr2 (pr1 fiber-vertex-reflexive-graph-Displayed-Large-Reflexive-Graph) = edge-Displayed-Large-Reflexive-Graph H (refl-Large-Reflexive-Graph G x) pr2 fiber-vertex-reflexive-graph-Displayed-Large-Reflexive-Graph = refl-Displayed-Large-Reflexive-Graph H
Recent changes
- 2024-12-03. Egbert Rijke. Hofmann-Streicher universes for graphs and globular types (#1196).
- 2024-03-24. Fredrik Bakke. Some notions of graphs (#1091).