Transport along homotopies
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-10-22.
Last modified on 2024-02-06.
module foundation.transport-along-homotopies where
Imports
open import foundation.action-on-identifications-functions open import foundation.function-extensionality open import foundation.homotopy-induction open import foundation.transport-along-higher-identifications open import foundation.universe-levels open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.transport-along-identifications
Idea
If C : (x : A) → B x → 𝒰
is a type family, and H : f ~ g
is a homotopy
between functions f g : (x : A) → B x
, then there is a natural transport
operation that transports an element z : C x (f x)
along the homotopy H
to
an element of type C x (g x)
.
Definitions
Transporting along homotopies
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3) {f g : (x : A) → B x} where tr-htpy : (f ~ g) → ((x : A) → C x (f x)) → ((x : A) → C x (g x)) tr-htpy H f' x = tr (C x) (H x) (f' x) tr-htpy² : {H K : f ~ g} (L : H ~ K) (f' : (x : A) → C x (f x)) → tr-htpy H f' ~ tr-htpy K f' tr-htpy² L f' x = tr² (C x) (L x) (f' x)
Properties
Transport along a homotopy H
is homotopic to transport along the identification eq-htpy H
module _ {l1 l2 l3 : Level} {A : UU l1} {B : A → UU l2} (C : (x : A) → B x → UU l3) where statement-compute-tr-htpy : {f g : (x : A) → B x} (H : f ~ g) → UU (l1 ⊔ l3) statement-compute-tr-htpy H = tr (λ u → (x : A) → C x (u x)) (eq-htpy H) ~ tr-htpy C H base-case-compute-tr-htpy : {f : (x : A) → B x} → statement-compute-tr-htpy (refl-htpy' f) base-case-compute-tr-htpy = htpy-eq (ap (tr (λ u → (x : A) → C x (u x))) (eq-htpy-refl-htpy _)) abstract compute-tr-htpy : {f g : (x : A) → B x} (H : f ~ g) → statement-compute-tr-htpy H compute-tr-htpy {f} {g} = ind-htpy f ( λ _ → statement-compute-tr-htpy) ( base-case-compute-tr-htpy) compute-tr-htpy-refl-htpy : {f : (x : A) → B x} → compute-tr-htpy (refl-htpy' f) = base-case-compute-tr-htpy compute-tr-htpy-refl-htpy {f} = compute-ind-htpy f ( λ _ → statement-compute-tr-htpy) ( base-case-compute-tr-htpy)
Recent changes
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-10-22. Egbert Rijke and Fredrik Bakke. Refactor synthetic homotopy theory (#654).