Scalar multiplication of linear maps between vector spaces
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.scalar-multiplication-linear-maps-vector-spaces where
Imports
open import commutative-algebra.heyting-fields open import foundation.universe-levels open import linear-algebra.linear-endomaps-vector-spaces open import linear-algebra.linear-maps-vector-spaces open import linear-algebra.scalar-multiplication-linear-maps-left-modules-commutative-rings open import linear-algebra.vector-spaces
Idea
Given a linear map f from a
vector space V to another vector space W
and a constant c : R, the map x ↦ c * f x is a linear map.
Definition
The linear transformation of scalar multiplication
module _ {l1 l2 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (c : type-Heyting-Field F) where is-linear-map-mul-Vector-Space : is-linear-endo-Vector-Space F V (mul-Vector-Space F V c) is-linear-map-mul-Vector-Space = is-linear-map-mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field F) ( V) ( c) linear-endo-mul-Vector-Space : linear-endo-Vector-Space F V linear-endo-mul-Vector-Space = linear-endo-mul-left-module-Commutative-Ring ( commutative-ring-Heyting-Field F) ( V) ( c)
Scalar multiplication of linear maps
module _ {l1 l2 l3 : Level} (F : Heyting-Field l1) (V : Vector-Space l2 F) (W : Vector-Space l3 F) (c : type-Heyting-Field F) where mul-linear-map-Vector-Space : linear-map-Vector-Space F V W → linear-map-Vector-Space F V W mul-linear-map-Vector-Space = comp-linear-map-Vector-Space F V W W ( linear-endo-mul-Vector-Space F W c)
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).