Inflattices
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.inflattices where
Imports
open import foundation.binary-relations open import foundation.dependent-pair-types open import foundation.logical-equivalences open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.greatest-lower-bounds-posets open import order-theory.lower-bounds-posets open import order-theory.posets
Idea
Consider a universe level l
. An
l
-inflattice¶ is a
poset which has all
greatest lower bounds of
families of elements indexed by a type at universe level l
.
Definitions
The predicate on posets of being an l
-inflattice
module _ {l1 l2 : Level} (l3 : Level) (P : Poset l1 l2) where is-inflattice-Poset-Prop : Prop (l1 ⊔ l2 ⊔ lsuc l3) is-inflattice-Poset-Prop = Π-Prop (UU l3) ( λ I → Π-Prop ( I → type-Poset P) ( λ f → has-greatest-lower-bound-family-of-elements-prop-Poset P f)) is-inflattice-Poset : UU (l1 ⊔ l2 ⊔ lsuc l3) is-inflattice-Poset = type-Prop is-inflattice-Poset-Prop is-prop-inflattice-Poset : is-prop is-inflattice-Poset is-prop-inflattice-Poset = is-prop-type-Prop is-inflattice-Poset-Prop module _ {l1 l2 l3 : Level} (P : Poset l1 l2) (H : is-inflattice-Poset l3 P) where inf-is-inflattice-Poset : {I : UU l3} → (I → type-Poset P) → type-Poset P inf-is-inflattice-Poset {I} x = pr1 (H I x) is-greatest-lower-bound-inf-is-inflattice-Poset : {I : UU l3} (x : I → type-Poset P) → is-greatest-lower-bound-family-of-elements-Poset P x ( inf-is-inflattice-Poset x) is-greatest-lower-bound-inf-is-inflattice-Poset {I} x = pr2 (H I x)
l
-Inflattices
Inflattice : (l1 l2 l3 : Level) → UU (lsuc l1 ⊔ lsuc l2 ⊔ lsuc l3) Inflattice l1 l2 l3 = Σ (Poset l1 l2) (λ P → is-inflattice-Poset l3 P) module _ {l1 l2 l3 : Level} (A : Inflattice l1 l2 l3) where poset-Inflattice : Poset l1 l2 poset-Inflattice = pr1 A type-Inflattice : UU l1 type-Inflattice = type-Poset poset-Inflattice leq-prop-Inflattice : (x y : type-Inflattice) → Prop l2 leq-prop-Inflattice = leq-prop-Poset poset-Inflattice leq-Inflattice : (x y : type-Inflattice) → UU l2 leq-Inflattice = leq-Poset poset-Inflattice is-prop-leq-Inflattice : (x y : type-Inflattice) → is-prop (leq-Inflattice x y) is-prop-leq-Inflattice = is-prop-leq-Poset poset-Inflattice refl-leq-Inflattice : (x : type-Inflattice) → leq-Inflattice x x refl-leq-Inflattice = refl-leq-Poset poset-Inflattice antisymmetric-leq-Inflattice : is-antisymmetric leq-Inflattice antisymmetric-leq-Inflattice = antisymmetric-leq-Poset poset-Inflattice transitive-leq-Inflattice : is-transitive leq-Inflattice transitive-leq-Inflattice = transitive-leq-Poset poset-Inflattice is-set-type-Inflattice : is-set type-Inflattice is-set-type-Inflattice = is-set-type-Poset poset-Inflattice set-Inflattice : Set l1 set-Inflattice = set-Poset poset-Inflattice is-inflattice-Inflattice : is-inflattice-Poset l3 poset-Inflattice is-inflattice-Inflattice = pr2 A inf-Inflattice : {I : UU l3} → (I → type-Inflattice) → type-Inflattice inf-Inflattice = inf-is-inflattice-Poset ( poset-Inflattice) ( is-inflattice-Inflattice) is-greatest-lower-bound-inf-Inflattice : {I : UU l3} (x : I → type-Inflattice) → is-greatest-lower-bound-family-of-elements-Poset ( poset-Inflattice) ( x) ( inf-Inflattice x) is-greatest-lower-bound-inf-Inflattice = is-greatest-lower-bound-inf-is-inflattice-Poset ( poset-Inflattice) ( is-inflattice-Inflattice) is-lower-bound-family-of-elements-inf-Inflattice : {I : UU l3} (x : I → type-Inflattice) → is-lower-bound-family-of-elements-Poset ( poset-Inflattice) ( x) ( inf-Inflattice x) is-lower-bound-family-of-elements-inf-Inflattice x = backward-implication ( is-greatest-lower-bound-inf-Inflattice x (inf-Inflattice x)) ( refl-leq-Inflattice (inf-Inflattice x))
External links
- inflattice at Lab
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).