Precomposition of dependent functions
Content created by Egbert Rijke, Fredrik Bakke, Daniel Gratzer, Elisabeth Stenholm and Raymond Baker.
Created on 2023-11-24.
Last modified on 2024-11-19.
module foundation.precomposition-dependent-functions where open import foundation-core.precomposition-dependent-functions public
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.dependent-universal-property-equivalences open import foundation.function-extensionality open import foundation.universe-levels open import foundation-core.commuting-squares-of-maps open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.truncated-maps open import foundation-core.truncation-levels open import foundation-core.type-theoretic-principle-of-choice
Properties
Equivalences induce an equivalence from the type of homotopies between two dependent functions to the type of homotopies between their precomposites
module _ { l1 l2 l3 : Level} {A : UU l1} where equiv-htpy-precomp-htpy-Π : {B : UU l2} {C : B → UU l3} (f g : (b : B) → C b) (e : A ≃ B) → (f ~ g) ≃ (f ∘ map-equiv e ~ g ∘ map-equiv e) equiv-htpy-precomp-htpy-Π f g e = equiv-precomp-Π e (eq-value f g)
The action on identifications of precomposition of dependent functions
Consider a map f : A → B
and two dependent functions g h : (x : B) → C x
.
Then the square
ap (precomp-Π f C)
(g = h) ---------------------------> (g ∘ f = h ∘ f)
| |
htpy-eq | | htpy-eq
∨ ∨
(g ~ h) ----------------------------> (g ∘ f ~ h ∘ f)
precomp-Π f (eq-value g h)
Similarly, the map ap (precomp-Π f C)
fits in a commuting square
precomp-Π f (eq-value g h)
(g ~ h) ----------------------------> (g ∘ f ~ h ∘ f)
| |
eq-htpy | | eq-htpy
∨ ∨
(g = h) ---------------------------> (g ∘ f = h ∘ f).
ap (precomp-Π f C)
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} (f : A → B) {C : B → UU l3} {g h : (b : B) → C b} where compute-htpy-eq-ap-precomp-Π : coherence-square-maps ( ap (precomp-Π f C) {g} {h}) ( htpy-eq) ( htpy-eq) ( precomp-Π f (eq-value g h)) compute-htpy-eq-ap-precomp-Π refl = refl compute-eq-htpy-ap-precomp-Π : coherence-square-maps ( precomp-Π f (eq-value g h)) ( eq-htpy) ( eq-htpy) ( ap (precomp-Π f C) {g} {h}) compute-eq-htpy-ap-precomp-Π = vertical-inv-equiv-coherence-square-maps ( ap (precomp-Π f C)) ( equiv-funext) ( equiv-funext) ( precomp-Π f (eq-value g h)) ( compute-htpy-eq-ap-precomp-Π)
Precomposing functions Π B C
by f : A → B
is k+1
-truncated if and only if precomposing homotopies is k
-truncated
is-trunc-map-succ-precomp-Π : {l1 l2 l3 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} {f : A → B} {C : B → UU l3} → ((g h : (b : B) → C b) → is-trunc-map k (precomp-Π f (eq-value g h))) → is-trunc-map (succ-𝕋 k) (precomp-Π f C) is-trunc-map-succ-precomp-Π {k = k} {f = f} {C = C} H = is-trunc-map-is-trunc-map-ap k (precomp-Π f C) ( λ g h → is-trunc-map-top-is-trunc-map-bottom-is-equiv k ( ap (precomp-Π f C)) ( htpy-eq) ( htpy-eq) ( precomp-Π f (eq-value g h)) ( compute-htpy-eq-ap-precomp-Π f) ( funext g h) ( funext (g ∘ f) (h ∘ f)) ( H g h))
The dependent precomposition map at a dependent pair type
Given a map f : X → Y
and a family B : (y : Y) → A y → 𝒰
we have a
commuting square
precomp-Π f (λ y → Σ (A y) (B y))
((y : Y) → Σ (A y) (B y)) -----------------------------> ((x : X) → Σ (A (f x)) (B (f x)))
| |
~ | | ~
∨ ∨
Σ (a : (y : Y) → A y) ((y : Y) → B y (a y)) --------> Σ (a : (x : X) → A (f x)) ((x : X) → B (f x) (a x)).
map-Σ (precomp-Π f A) (λ a → precomp-Π f (λ y → B y (a y)))
module _ {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} {A : Y → UU l3} {B : (y : Y) → A y → UU l4} {f : X → Y} where coherence-precomp-Π-Σ : coherence-square-maps ( precomp-Π f (λ y → Σ (A y) (B y))) ( map-distributive-Π-Σ) ( map-distributive-Π-Σ) ( map-Σ ( λ a → (x : X) → B (f x) (a x)) ( precomp-Π f A) ( λ a → precomp-Π f (λ y → B y (a y)))) coherence-precomp-Π-Σ = refl-htpy
Recent changes
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-02-19. Fredrik Bakke. Additions for coherently invertible maps (#1024).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).