Limits of Cauchy approximations in pseudometric spaces
Content created by Louis Wasserman and malarbol.
Created on 2025-08-18.
Last modified on 2025-08-18.
module metric-spaces.limits-of-cauchy-approximations-pseudometric-spaces where
Imports
open import elementary-number-theory.positive-rational-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import metric-spaces.cauchy-approximations-pseudometric-spaces open import metric-spaces.pseudometric-spaces open import metric-spaces.similarity-of-elements-pseudometric-spaces
Idea
A
Cauchy approximation
f : ℚ⁺ → A
in a pseudometric space A
has a
limit¶
x : A
if f ε
is near x
for small ε : ℚ⁺
; more precisely, if f ε
is in
a ε + δ
-neighborhood of
x
for all ε δ : ℚ⁺
.
Definitions
The property of having a limit in a pseudometric space
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (f : cauchy-approximation-Pseudometric-Space A) where is-limit-cauchy-approximation-prop-Pseudometric-Space : type-Pseudometric-Space A → Prop l2 is-limit-cauchy-approximation-prop-Pseudometric-Space lim = Π-Prop ( ℚ⁺) ( λ ε → Π-Prop ( ℚ⁺) ( λ δ → neighborhood-prop-Pseudometric-Space ( A) ( ε +ℚ⁺ δ) ( map-cauchy-approximation-Pseudometric-Space A f ε) ( lim))) is-limit-cauchy-approximation-Pseudometric-Space : type-Pseudometric-Space A → UU l2 is-limit-cauchy-approximation-Pseudometric-Space = type-Prop ∘ is-limit-cauchy-approximation-prop-Pseudometric-Space
Properties
Limits of a Cauchy approximations in a pseudometric space are similar
module _ {l1 l2 : Level} (A : Pseudometric-Space l1 l2) (f : cauchy-approximation-Pseudometric-Space A) (x y : type-Pseudometric-Space A) where all-sim-is-limit-cauchy-approximation-Pseudometric-Space : is-limit-cauchy-approximation-Pseudometric-Space A f x → is-limit-cauchy-approximation-Pseudometric-Space A f y → sim-Pseudometric-Space A x y all-sim-is-limit-cauchy-approximation-Pseudometric-Space lim-x lim-y d = let (ε , δ , ε+δ=d) = split-ℚ⁺ d θ = mediant-zero-min-ℚ⁺ ε δ θ<ε = le-left-mediant-zero-min-ℚ⁺ ε δ θ<δ = le-right-mediant-zero-min-ℚ⁺ ε δ ε' = le-diff-ℚ⁺ θ ε θ<ε δ' = le-diff-ℚ⁺ θ δ θ<δ fθ = map-cauchy-approximation-Pseudometric-Space A f θ Nεx : neighborhood-Pseudometric-Space A ε fθ x Nεx = tr ( is-upper-bound-dist-Pseudometric-Space A fθ x) ( right-diff-law-add-ℚ⁺ θ ε θ<ε) ( lim-x θ ε') Nδy : neighborhood-Pseudometric-Space A δ fθ y Nδy = tr ( is-upper-bound-dist-Pseudometric-Space A fθ y) ( right-diff-law-add-ℚ⁺ θ δ θ<δ) ( lim-y θ δ') Nxy : neighborhood-Pseudometric-Space A (ε +ℚ⁺ δ) x y Nxy = triangular-neighborhood-Pseudometric-Space ( A) ( x) ( fθ) ( y) ( ε) ( δ) ( Nδy) ( symmetric-neighborhood-Pseudometric-Space A ε fθ x Nεx) in tr ( is-upper-bound-dist-Pseudometric-Space A x y) ( ε+δ=d) ( Nxy)
References
Our definition of limit of Cauchy approximation follows Definition 11.2.10 of [UF13].
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
Recent changes
- 2025-08-18. malarbol and Louis Wasserman. Refactor metric spaces (#1450).