Large homotopies
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-03-23.
Last modified on 2023-06-10.
module foundation.large-homotopies where
Idea
A large homotopy of identifications is a pointwise equality between large dependent functions.
Definitions
module _ {X : UUω} {P : X → UUω} (f g : (x : X) → P x) where eq-large-value : X → UUω eq-large-value x = (f x =ω g x)
module _ {A : UUω} {B : A → UUω} where _~ω_ : (f g : (x : A) → B x) → UUω f ~ω g = (x : A) → eq-large-value f g x
Properties
Reflexivity
module _ {A : UUω} {B : A → UUω} where refl-large-htpy : {f : (x : A) → B x} → f ~ω f refl-large-htpy x = reflω refl-large-htpy' : (f : (x : A) → B x) → f ~ω f refl-large-htpy' f = refl-large-htpy
Recent changes
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644). - 2023-06-07. Fredrik Bakke. Move public imports before “Imports” block (#642).
- 2023-03-23. Fredrik Bakke. Some additions to and refactoring large types (#529).