Positive integer fractions
Content created by Fredrik Bakke and malarbol.
Created on 2024-04-25.
Last modified on 2024-04-25.
module elementary-number-theory.positive-integer-fractions where
Imports
open import elementary-number-theory.addition-integer-fractions open import elementary-number-theory.addition-positive-and-negative-integers open import elementary-number-theory.integer-fractions open import elementary-number-theory.integers open import elementary-number-theory.multiplication-integer-fractions open import elementary-number-theory.multiplication-positive-and-negative-integers open import elementary-number-theory.positive-integers open import elementary-number-theory.reduced-integer-fractions open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels
Idea
An integer fraction x
is said
to be
positive¶
if its numerator is a
positive integer.
Definitions
The property of being a positive integer fraction
module _ (x : fraction-ℤ) where is-positive-fraction-ℤ : UU lzero is-positive-fraction-ℤ = is-positive-ℤ (numerator-fraction-ℤ x) is-prop-is-positive-fraction-ℤ : is-prop is-positive-fraction-ℤ is-prop-is-positive-fraction-ℤ = is-prop-is-positive-ℤ (numerator-fraction-ℤ x)
Properties
An integer fraction similar to a positive integer fraction is positive
is-positive-sim-fraction-ℤ : (x y : fraction-ℤ) (S : sim-fraction-ℤ x y) → is-positive-fraction-ℤ x → is-positive-fraction-ℤ y is-positive-sim-fraction-ℤ x y S P = is-positive-left-factor-mul-ℤ ( is-positive-eq-ℤ ( S) ( is-positive-mul-ℤ P (is-positive-denominator-fraction-ℤ y))) ( is-positive-denominator-fraction-ℤ x)
The reduced fraction of a positive integer fraction is positive
is-positive-reduce-fraction-ℤ : {x : fraction-ℤ} (P : is-positive-fraction-ℤ x) → is-positive-fraction-ℤ (reduce-fraction-ℤ x) is-positive-reduce-fraction-ℤ {x} = is-positive-sim-fraction-ℤ ( x) ( reduce-fraction-ℤ x) ( sim-reduced-fraction-ℤ x)
The sum of two positive integer fractions is positive
is-positive-add-fraction-ℤ : {x y : fraction-ℤ} → is-positive-fraction-ℤ x → is-positive-fraction-ℤ y → is-positive-fraction-ℤ (add-fraction-ℤ x y) is-positive-add-fraction-ℤ {x} {y} P Q = is-positive-add-ℤ ( is-positive-mul-ℤ P (is-positive-denominator-fraction-ℤ y)) ( is-positive-mul-ℤ Q (is-positive-denominator-fraction-ℤ x))
The product of two positive integer fractions is positive
is-positive-mul-fraction-ℤ : {x y : fraction-ℤ} → is-positive-fraction-ℤ x → is-positive-fraction-ℤ y → is-positive-fraction-ℤ (mul-fraction-ℤ x y) is-positive-mul-fraction-ℤ {x} {y} = is-positive-mul-ℤ
Recent changes
- 2024-04-25. malarbol and Fredrik Bakke. The discrete field of rational numbers (#1111).