Cumulative hierarchy
Content created by Fredrik Bakke, Egbert Rijke, Fernando Chu and Jonathan Prieto-Cubides.
Created on 2023-02-19.
Last modified on 2024-09-23.
module set-theory.cumulative-hierarchy where
Imports
open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.booleans open import foundation.cartesian-product-types open import foundation.constant-type-families open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.existential-quantification open import foundation.function-types open import foundation.functoriality-propositional-truncation open import foundation.identity-types open import foundation.logical-equivalences open import foundation.negation open import foundation.propositional-extensionality open import foundation.propositional-truncations open import foundation.propositions open import foundation.raising-universe-levels open import foundation.sets open import foundation.transport-along-identifications open import foundation.truncated-types open import foundation.unit-type open import foundation.universe-levels
Idea
The cumulative hierarchy¶ is a model of set theory. Instead of introducing it as a HIT, as in Section 10.4 of [UF13], we introduce its induction principle following [dJKFX23].
Definitions
Smaller image
has-smaller-image : { l1 l2 l3 : Level} → {A : UU l1} {B : UU l2} {C : UU l3} → (A → C) → (B → C) → UU (l1 ⊔ l2 ⊔ l3) has-smaller-image {l1} {l2} {l3} {A} {B} {C} f g = (a : A) → exists-structure B (λ b → g b = f a) has-same-image : { l1 l2 l3 : Level} → {A : UU l1} {B : UU l2} {C : UU l3} → (A → C) → (B → C) → UU (l1 ⊔ l2 ⊔ l3) has-same-image {l1} {l2} {l3} {A} {B} {C} f g = has-smaller-image f g × has-smaller-image g f
Pseudo cumulative hierarchy
A type is a pseudo cumulative hierarchy if it has the structure of a cumulative hierarchy, but not necessarily its induction principle.
has-cumulative-hierarchy-structure : {l : Level} → (V : UU (lsuc l)) → UU (lsuc l) has-cumulative-hierarchy-structure {l} V = ( is-set V) × ( Σ ({A : UU l} → (A → V) → V) ( λ V-set → ( {A B : UU l} (f : A → V) (g : B → V) → ( has-same-image f g) → V-set f = V-set g))) pseudo-cumulative-hierarchy : (l : Level) → UU (lsuc (lsuc l)) pseudo-cumulative-hierarchy (l) = Σ (UU (lsuc l)) has-cumulative-hierarchy-structure module _ {l : Level} (V : pseudo-cumulative-hierarchy l) where type-pseudo-cumulative-hierarchy : UU (lsuc l) type-pseudo-cumulative-hierarchy = pr1 V is-set-pseudo-cumulative-hierarchy : is-set type-pseudo-cumulative-hierarchy is-set-pseudo-cumulative-hierarchy = pr1 (pr2 V) set-pseudo-cumulative-hierarchy : { A : UU l} → ( A → type-pseudo-cumulative-hierarchy) → type-pseudo-cumulative-hierarchy set-pseudo-cumulative-hierarchy = pr1 (pr2 (pr2 V)) set-ext-pseudo-cumulative-hierarchy : { A B : UU l} (f : A → type-pseudo-cumulative-hierarchy) ( g : B → type-pseudo-cumulative-hierarchy) → ( has-same-image f g) → set-pseudo-cumulative-hierarchy f = set-pseudo-cumulative-hierarchy g set-ext-pseudo-cumulative-hierarchy = pr2 (pr2 (pr2 V))
The induction principle and computation rule of the cumulative hierarchy
module _ {l1 : Level} (l2 : Level) (V : pseudo-cumulative-hierarchy l1) where induction-principle-cumulative-hierarchy : UU (lsuc (l1 ⊔ l2)) induction-principle-cumulative-hierarchy = ( P : type-pseudo-cumulative-hierarchy V → UU l2) → ( (x : type-pseudo-cumulative-hierarchy V) → is-set (P x)) → ( ρ : { A : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) → ( (a : A) → P (f a)) → P (set-pseudo-cumulative-hierarchy V f)) → ( { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) → ( g : B → type-pseudo-cumulative-hierarchy V) ( e : has-same-image f g) ( IH₁ : (a : A) → P (f a)) ( IH₂ : (b : B) → P (g b)) → ( ( a : A) → exists-structure B (λ b → Σ (f a = g b) ( λ p → tr P p (IH₁ a) = IH₂ b))) → ( ( b : B) → exists-structure A (λ a → Σ (g b = f a) (λ p → tr P p (IH₂ b) = IH₁ a))) → tr P (set-ext-pseudo-cumulative-hierarchy V f g e) (ρ f IH₁) = ρ g IH₂) → (x : type-pseudo-cumulative-hierarchy V) → P x compute-induction-principle-cumulative-hierarchy : induction-principle-cumulative-hierarchy → UU (lsuc (l1 ⊔ l2)) compute-induction-principle-cumulative-hierarchy IP = ( P : type-pseudo-cumulative-hierarchy V → UU l2) → ( σ : (x : type-pseudo-cumulative-hierarchy V) → is-set (P x)) → ( ρ : { A : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) → ( (a : A) → P (f a)) → P (set-pseudo-cumulative-hierarchy V f)) → ( τ : { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) → ( g : B → type-pseudo-cumulative-hierarchy V) ( e : has-same-image f g) ( IH₁ : (a : A) → P (f a)) ( IH₂ : (b : B) → P (g b)) → ( (a : A) → exists-structure B (λ b → Σ (f a = g b) ( λ p → tr P p (IH₁ a) = IH₂ b))) → ( (b : B) → exists-structure A (λ a → Σ (g b = f a) (λ p → tr P p (IH₂ b) = IH₁ a))) → tr P (set-ext-pseudo-cumulative-hierarchy V f g e) (ρ f IH₁) = ρ g IH₂) → { A : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( IH : (a : A) → P (f a)) → IP P σ ρ τ (set-pseudo-cumulative-hierarchy V f) = ρ f IH
Examples
module _ {l1 : Level} (V : pseudo-cumulative-hierarchy l1) (induction-principle-cumulative-hierarchy-V : (l2 : Level) → induction-principle-cumulative-hierarchy l2 V) (compute-induction-principle-cumulative-hierarchy-V : (l2 : Level) → compute-induction-principle-cumulative-hierarchy l2 V (induction-principle-cumulative-hierarchy-V l2)) where
The empty set
empty-set-cumulative-hierarchy : type-pseudo-cumulative-hierarchy V empty-set-cumulative-hierarchy = set-pseudo-cumulative-hierarchy V (raise-ex-falso l1)
The set containing only the empty set
set-empty-set-cumulative-hierarchy : type-pseudo-cumulative-hierarchy V set-empty-set-cumulative-hierarchy = set-pseudo-cumulative-hierarchy V {raise-unit l1} ( λ _ → empty-set-cumulative-hierarchy)
Properties
Every element of the cumulative hierarchy is given by a function into the cumulative hierarchy
underlying-function-cumulative-hierarchy : (v : type-pseudo-cumulative-hierarchy V) → exists-structure ( UU l1) ( λ A → Σ ( A → type-pseudo-cumulative-hierarchy V) ( λ f → set-pseudo-cumulative-hierarchy V f = v)) underlying-function-cumulative-hierarchy = induction-principle-cumulative-hierarchy-V ( lsuc l1) _ ( λ _ → is-trunc-type-Truncated-Type (set-trunc-Prop _)) ( λ {A} f H → unit-trunc-Prop (pair A (pair f refl))) ( λ f g e IH₁ IH₂ hIH₁ hIH₂ → eq-is-prop is-prop-type-trunc-Prop)
The induction principle simplified for families of propositions
prop-ind-principle-cumulative-hierarchy : { l2 : Level} ( P : type-pseudo-cumulative-hierarchy V → UU l2) → ( ( x : type-pseudo-cumulative-hierarchy V) → is-prop (P x)) → ( { A : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) → ( (a : A) → P (f a)) → ( P (set-pseudo-cumulative-hierarchy V f))) → ( x : type-pseudo-cumulative-hierarchy V) → P x prop-ind-principle-cumulative-hierarchy {l2} P σ ρ = induction-principle-cumulative-hierarchy-V l2 P ( λ x → is-set-is-prop (σ x)) ρ ( λ _ g _ _ _ _ _ → eq-is-prop (σ (set-pseudo-cumulative-hierarchy V g))) compute-prop-ind-principle-cumulative-hierarchy : { l2 : Level} ( P : type-pseudo-cumulative-hierarchy V → UU l2) → ( σ : ( x : type-pseudo-cumulative-hierarchy V) → is-prop (P x)) → ( ρ : { A : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) → ( (a : A) → P (f a)) → ( P (set-pseudo-cumulative-hierarchy V f))) → { A : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( IH : (a : A) → P (f a)) → prop-ind-principle-cumulative-hierarchy P σ ρ (set-pseudo-cumulative-hierarchy V f) = ρ f IH compute-prop-ind-principle-cumulative-hierarchy {l2} P σ ρ = compute-induction-principle-cumulative-hierarchy-V l2 P ( λ x → is-set-is-prop (σ x)) ρ ( λ _ g _ _ _ _ _ → eq-is-prop (σ (set-pseudo-cumulative-hierarchy V g)))
The recursion principle and its computation rule for the cumulative hierarchy
recursion-principle-cumulative-hierarchy : { l2 : Level} ( X : UU l2) (σ : is-set X) ( ρ : {A : UU l1} → (A → type-pseudo-cumulative-hierarchy V) → (A → X) → X) ( τ : { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) ( e : has-same-image f g) ( IH₁ : A → X) ( IH₂ : B → X) → ( (a : A) → exists-structure B (λ b → (f a = g b) × (IH₁ a = IH₂ b))) → ( (b : B) → exists-structure A (λ a → (g b = f a) × (IH₂ b = IH₁ a))) → ρ f IH₁ = ρ g IH₂) → type-pseudo-cumulative-hierarchy V → X recursion-principle-cumulative-hierarchy {l2} X σ ρ τ = induction-principle-cumulative-hierarchy-V l2 (λ _ → X) (λ _ → σ) ρ τ' where τ' : { A B : UU l1} (f : A → pr1 V) (g : B → pr1 V) ( e : has-same-image f g) ( IH₁ : (a : A) → X) (IH₂ : (b : B) → X) → ( (a : A) → exists-structure B (λ b → Σ (f a = g b) (λ p → tr (λ _ → X) p (IH₁ a) = IH₂ b))) → ( (b : B) → exists-structure A (λ a → Σ (g b = f a) (λ p → tr (λ _ → X) p (IH₂ b) = IH₁ a))) → tr (λ _ → X) (pr2 (pr2 (pr2 V)) f g e) (ρ f IH₁) = ρ g IH₂ τ' {A} {B} f g e IH₁ IH₂ hIH₁ hIH₂ = equational-reasoning tr (λ _ → X) (pr2 (pr2 (pr2 V)) f g e) (ρ f IH₁) = ρ f IH₁ by tr-constant-type-family path-f-g (ρ f IH₁) = ρ g IH₂ by τ f g e IH₁ IH₂ hIH₁' hIH₂' where path-f-g : set-pseudo-cumulative-hierarchy V f = set-pseudo-cumulative-hierarchy V g path-f-g = set-ext-pseudo-cumulative-hierarchy V f g e hIH₁' : (a : A) → exists-structure B (λ b → Σ (f a = g b) (λ _ → IH₁ a = IH₂ b)) hIH₁' a = map-trunc-Prop ( λ (b , p , q) → ( b , p , (inv (tr-constant-type-family p _) ∙ q))) ( hIH₁ a) hIH₂' : (b : B) → exists-structure A (λ a → Σ (g b = f a) (λ _ → IH₂ b = IH₁ a)) hIH₂' b = map-trunc-Prop ( λ (a , p , q) → ( a , p , (inv (tr-constant-type-family p _) ∙ q))) ( hIH₂ b) compute-recursion-principle-cumulative-hierarchy : { l2 : Level} ( X : UU l2) (σ : is-set X) ( ρ : {A : UU l1} → (A → type-pseudo-cumulative-hierarchy V) → (A → X) → X) ( τ : { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) ( e : has-same-image f g) ( IH₁ : A → X) ( IH₂ : B → X) → ( ( a : A) → exists-structure B (λ b → (f a = g b) × (IH₁ a = IH₂ b))) → ( ( b : B) → exists-structure A (λ a → (g b = f a) × (IH₂ b = IH₁ a))) → ρ f IH₁ = ρ g IH₂) → {A : UU l1} → (f : A → type-pseudo-cumulative-hierarchy V) → (IH : A → X) → recursion-principle-cumulative-hierarchy X σ ρ τ ( set-pseudo-cumulative-hierarchy V f) = ρ f IH compute-recursion-principle-cumulative-hierarchy {l2} X σ ρ τ = compute-induction-principle-cumulative-hierarchy-V l2 (λ _ → X) (λ _ → σ) ρ τ' where τ' : { A B : UU l1} (f : A → pr1 V) (g : B → pr1 V) ( e : has-same-image f g) ( IH₁ : (a : A) → X) (IH₂ : (b : B) → X) → ( ( a : A) → exists-structure B (λ b → Σ (f a = g b) ( λ p → tr (λ _ → X) p (IH₁ a) = IH₂ b))) → ( ( b : B) → exists-structure A (λ a → Σ (g b = f a) ( λ p → tr (λ _ → X) p (IH₂ b) = IH₁ a))) → tr (λ _ → X) (pr2 (pr2 (pr2 V)) f g e) (ρ f IH₁) = ρ g IH₂ τ' {A} {B} f g e IH₁ IH₂ hIH₁ hIH₂ = equational-reasoning tr (λ _ → X) (pr2 (pr2 (pr2 V)) f g e) (ρ f IH₁) = ρ f IH₁ by tr-constant-type-family path-f-g (ρ f IH₁) = ρ g IH₂ by τ f g e IH₁ IH₂ hIH₁' hIH₂' where path-f-g : set-pseudo-cumulative-hierarchy V f = set-pseudo-cumulative-hierarchy V g path-f-g = set-ext-pseudo-cumulative-hierarchy V f g e hIH₁' : (a : A) → exists-structure B (λ b → Σ (f a = g b) (λ _ → IH₁ a = IH₂ b)) hIH₁' a = map-trunc-Prop ( λ (b , p , q) → ( b , p , (inv (tr-constant-type-family p _) ∙ q))) ( hIH₁ a) hIH₂' : (b : B) → exists-structure A (λ a → Σ (g b = f a) (λ _ → IH₂ b = IH₁ a)) hIH₂' b = map-trunc-Prop ( λ (a , p , q) → ( a , p , (inv (tr-constant-type-family p _) ∙ q))) ( hIH₂ b)
A simplification of the recursion principle, when the codomain is Prop l2
.
prop-recursion-principle-cumulative-hierarchy : {l2 : Level} ( ρ : { A : UU l1} → (A → type-pseudo-cumulative-hierarchy V) → ( A → Prop l2) → Prop l2) ( τ : {A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) ( e : has-smaller-image f g) ( IH₁ : A → Prop l2) ( IH₂ : B → Prop l2) → ( (a : A) → exists-structure B (λ b → (f a = g b) × (IH₁ a = IH₂ b))) → type-Prop (ρ f IH₁) → type-Prop (ρ g IH₂)) → type-pseudo-cumulative-hierarchy V → Prop l2 prop-recursion-principle-cumulative-hierarchy {l2} ρ τ = recursion-principle-cumulative-hierarchy (Prop l2) is-set-type-Prop ρ τ' where τ' : { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) → ( e : has-same-image f g) ( IH₁ : A → Prop l2) (IH₂ : B → Prop l2) → ( (a : A) → exists-structure B (λ b → (f a = g b) × (IH₁ a = IH₂ b))) → ( (b : B) → exists-structure A (λ a → (g b = f a) × (IH₂ b = IH₁ a))) → ρ f IH₁ = ρ g IH₂ τ' f g (e₁ , e₂) IH₁ IH₂ hIH₁ hIH₂ = eq-iff (τ f g e₁ IH₁ IH₂ hIH₁) (τ g f e₂ IH₂ IH₁ hIH₂) compute-prop-recursion-principle-cumulative-hierarchy : {l2 : Level} ( ρ : { A : UU l1} → (A → type-pseudo-cumulative-hierarchy V) → ( A → Prop l2) → Prop l2) ( τ : { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) ( e : has-smaller-image f g) ( IH₁ : A → Prop l2) ( IH₂ : B → Prop l2) → ( (a : A) → exists-structure B (λ b → (f a = g b) × (IH₁ a = IH₂ b))) → type-Prop (ρ f IH₁) → type-Prop (ρ g IH₂)) → { A : UU l1} → (f : A → type-pseudo-cumulative-hierarchy V) → ( IH : A → Prop l2) → prop-recursion-principle-cumulative-hierarchy ρ τ ( set-pseudo-cumulative-hierarchy V f) = ρ f IH compute-prop-recursion-principle-cumulative-hierarchy {l2} ρ τ = compute-recursion-principle-cumulative-hierarchy (Prop l2) is-set-type-Prop ρ τ' where τ' : { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) → ( e : has-same-image f g) ( IH₁ : A → Prop l2) (IH₂ : B → Prop l2) → ( (a : A) → exists-structure B (λ b → (f a = g b) × (IH₁ a = IH₂ b))) → ( (b : B) → exists-structure A (λ a → (g b = f a) × (IH₂ b = IH₁ a))) → ρ f IH₁ = ρ g IH₂ τ' f g (e₁ , e₂) IH₁ IH₂ hIH₁ hIH₂ = eq-iff (τ f g e₁ IH₁ IH₂ hIH₁) (τ g f e₂ IH₂ IH₁ hIH₂)
Another simplification of the recursion principle, when recursive calls are not needed.
simple-prop-recursion-principle-cumulative-hierarchy : {l2 : Level} ( ρ : {A : UU l1} → (A → type-pseudo-cumulative-hierarchy V) → Prop l2) ( τ : { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) → ( e : has-smaller-image f g) → type-Prop (ρ f) → type-Prop (ρ g)) → type-pseudo-cumulative-hierarchy V → Prop l2 simple-prop-recursion-principle-cumulative-hierarchy {l2} ρ τ = prop-recursion-principle-cumulative-hierarchy ( λ f _ → ρ f) (λ f g e _ _ _ → τ f g e) compute-simple-prop-recursion-principle-cumulative-hierarchy : {l2 : Level} ( ρ : {A : UU l1} → (A → type-pseudo-cumulative-hierarchy V) → Prop l2) ( τ : { A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) → ( e : has-smaller-image f g) → type-Prop (ρ f) → type-Prop (ρ g)) → {A : UU l1} → (f : A → type-pseudo-cumulative-hierarchy V) → simple-prop-recursion-principle-cumulative-hierarchy ρ τ ( set-pseudo-cumulative-hierarchy V f) = ρ f compute-simple-prop-recursion-principle-cumulative-hierarchy {l2} ρ τ f = compute-prop-recursion-principle-cumulative-hierarchy ( λ f _ → ρ f) (λ f g e _ _ _ → τ f g e) f (λ _ → raise-Prop l2 unit-Prop)
The membership relationship for the cumulative hierarchy
∈-cumulative-hierarchy-Prop : ( type-pseudo-cumulative-hierarchy V) → ( type-pseudo-cumulative-hierarchy V) → Prop (lsuc l1) ∈-cumulative-hierarchy-Prop x = simple-prop-recursion-principle-cumulative-hierarchy ( λ {A} f → exists-structure-Prop A (λ a → f a = x)) ( e) where e : {A B : UU l1} (f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) → ( e : has-smaller-image f g) → ( exists-structure A (λ a → f a = x) → exists-structure B (λ b → g b = x)) e {A} {B} f g s = map-universal-property-trunc-Prop ( exists-structure-Prop B (λ b → g b = x)) ( λ ( a , p) → map-trunc-Prop (λ (b , q) → (b , q ∙ p)) (s a)) ∈-cumulative-hierarchy : ( type-pseudo-cumulative-hierarchy V) → ( type-pseudo-cumulative-hierarchy V) → UU (lsuc l1) ∈-cumulative-hierarchy x y = type-Prop (∈-cumulative-hierarchy-Prop x y) id-∈-cumulative-hierarchy : ( x : type-pseudo-cumulative-hierarchy V) {A : UU l1} ( f : A → type-pseudo-cumulative-hierarchy V) → ( ∈-cumulative-hierarchy x (set-pseudo-cumulative-hierarchy V f)) = exists-structure A (λ a → f a = x) id-∈-cumulative-hierarchy x f = ap pr1 (compute-simple-prop-recursion-principle-cumulative-hierarchy _ _ f) ∈-cumulative-hierarchy-mere-preimage : { x : type-pseudo-cumulative-hierarchy V} → { A : UU l1} { f : A → type-pseudo-cumulative-hierarchy V} → ( ∈-cumulative-hierarchy x (set-pseudo-cumulative-hierarchy V f)) → exists-structure A (λ a → f a = x) ∈-cumulative-hierarchy-mere-preimage {x} {A} {f} = tr id (id-∈-cumulative-hierarchy x f) mere-preimage-∈-cumulative-hierarchy : { x : type-pseudo-cumulative-hierarchy V} → { A : UU l1} { f : A → type-pseudo-cumulative-hierarchy V} → exists-structure A (λ a → f a = x) → ( ∈-cumulative-hierarchy x (set-pseudo-cumulative-hierarchy V f)) mere-preimage-∈-cumulative-hierarchy {x} {A} {f} = tr id (inv (id-∈-cumulative-hierarchy x f)) is-prop-∈-cumulative-hierarchy : ( x : type-pseudo-cumulative-hierarchy V) → ( y : type-pseudo-cumulative-hierarchy V) → is-prop (∈-cumulative-hierarchy x y) is-prop-∈-cumulative-hierarchy x y = is-prop-type-Prop (∈-cumulative-hierarchy-Prop x y)
The subset relationship for the cumulative hierarchy
⊆-cumulative-hierarchy : ( type-pseudo-cumulative-hierarchy V) → ( type-pseudo-cumulative-hierarchy V) → UU (lsuc l1) ⊆-cumulative-hierarchy x y = ( v : type-pseudo-cumulative-hierarchy V) → ∈-cumulative-hierarchy v x → ∈-cumulative-hierarchy v y is-prop-⊆-cumulative-hierarchy : ( x : type-pseudo-cumulative-hierarchy V) → ( y : type-pseudo-cumulative-hierarchy V) → is-prop (⊆-cumulative-hierarchy x y) is-prop-⊆-cumulative-hierarchy x y = is-prop-Π ( λ v → ( is-prop-Π (λ _ → is-prop-∈-cumulative-hierarchy v y))) ⊆-cumulative-hierarchy-has-smaller-image : { A B : UU l1} ( f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) → ⊆-cumulative-hierarchy ( set-pseudo-cumulative-hierarchy V f) ( set-pseudo-cumulative-hierarchy V g) → has-smaller-image f g ⊆-cumulative-hierarchy-has-smaller-image f g s a = ∈-cumulative-hierarchy-mere-preimage ( s (f a) ( mere-preimage-∈-cumulative-hierarchy (unit-trunc-Prop (a , refl)))) has-smaller-image-⊆-cumulative-hierarchy : { A B : UU l1} ( f : A → type-pseudo-cumulative-hierarchy V) ( g : B → type-pseudo-cumulative-hierarchy V) → has-smaller-image f g → ⊆-cumulative-hierarchy ( set-pseudo-cumulative-hierarchy V f) ( set-pseudo-cumulative-hierarchy V g) has-smaller-image-⊆-cumulative-hierarchy {A} {B} f g s x m = mere-preimage-∈-cumulative-hierarchy ( map-universal-property-trunc-Prop ( exists-structure-Prop B (λ b → g b = x)) ( λ (a , p) → map-trunc-Prop (λ (b , q) → (b , q ∙ p)) (s a)) ( ∈-cumulative-hierarchy-mere-preimage m))
Extensionality of the membership relation
pre-extensionality-∈-cumulative-hierarchy : { A : UU l1} ( f : A → type-pseudo-cumulative-hierarchy V) ( x : type-pseudo-cumulative-hierarchy V) → ( ⊆-cumulative-hierarchy x (set-pseudo-cumulative-hierarchy V f)) → ( ⊆-cumulative-hierarchy (set-pseudo-cumulative-hierarchy V f) x) → x = (set-pseudo-cumulative-hierarchy V f) pre-extensionality-∈-cumulative-hierarchy f = prop-ind-principle-cumulative-hierarchy ( λ x → ⊆-cumulative-hierarchy x (set-pseudo-cumulative-hierarchy V f) → ⊆-cumulative-hierarchy (set-pseudo-cumulative-hierarchy V f) x → x = (set-pseudo-cumulative-hierarchy V f)) ( λ v → is-prop-Π (λ _ → is-prop-Π (λ _ → is-set-pseudo-cumulative-hierarchy V v (set-pseudo-cumulative-hierarchy V f)))) ( λ g H H₁ H₂ → set-ext-pseudo-cumulative-hierarchy V g f ( ⊆-cumulative-hierarchy-has-smaller-image g f H₁ , ⊆-cumulative-hierarchy-has-smaller-image f g H₂)) extensionality-∈-cumulative-hierarchy : ( x y : type-pseudo-cumulative-hierarchy V) → ( ⊆-cumulative-hierarchy x y) → ( ⊆-cumulative-hierarchy y x) → x = y extensionality-∈-cumulative-hierarchy x = prop-ind-principle-cumulative-hierarchy ( λ y → ⊆-cumulative-hierarchy x y → ⊆-cumulative-hierarchy y x → x = y) ( λ v → is-prop-Π (λ _ → is-prop-Π (λ _ → is-set-pseudo-cumulative-hierarchy V x v))) ( λ f H H₁ H₂ → pre-extensionality-∈-cumulative-hierarchy f x H₁ H₂)
Cumulative hierarchies satisfy the empty set axiom
empty-set-axiom-cumulative-hierarchy : ( x : type-pseudo-cumulative-hierarchy V) → ¬ (∈-cumulative-hierarchy x empty-set-cumulative-hierarchy) empty-set-axiom-cumulative-hierarchy x H = map-universal-property-trunc-Prop empty-Prop ( λ (z , p) → raise-ex-falso l1 z) ( ∈-cumulative-hierarchy-mere-preimage H)
Cumulative hierarchies satisfy the pair axiom
pair-cumulative-hierarchy : ( x y : type-pseudo-cumulative-hierarchy V) → type-pseudo-cumulative-hierarchy V pair-cumulative-hierarchy x y = set-pseudo-cumulative-hierarchy V bool-map where bool-map : raise-bool l1 → type-pseudo-cumulative-hierarchy V bool-map (map-raise true) = x bool-map (map-raise false) = y abstract pair-axiom-cumulative-hierarchy : ( x y v : type-pseudo-cumulative-hierarchy V) → ( ∈-cumulative-hierarchy v (pair-cumulative-hierarchy x y) ↔ type-trunc-Prop ( (v = x) + (v = y))) pr1 (pair-axiom-cumulative-hierarchy x y v) H = map-universal-property-trunc-Prop ( trunc-Prop ((v = x) + (v = y))) ( λ where ( map-raise true , p) → unit-trunc-Prop (inl (inv p)) ( map-raise false , p) → unit-trunc-Prop (inr (inv p))) ( ∈-cumulative-hierarchy-mere-preimage H) pr2 (pair-axiom-cumulative-hierarchy x y v) H = mere-preimage-∈-cumulative-hierarchy ( map-trunc-Prop ( λ where ( inl p) → (map-raise true , inv p) ( inr p) → (map-raise false , inv p)) ( H))
Singleton function
singleton-cumulative-hierarchy : type-pseudo-cumulative-hierarchy V → type-pseudo-cumulative-hierarchy V singleton-cumulative-hierarchy x = ( set-pseudo-cumulative-hierarchy V {raise-unit l1} ( λ _ → x))
Cumulative hierarchies satisfy the infinity axiom
infinity-cumulative-hierarchy : type-pseudo-cumulative-hierarchy V infinity-cumulative-hierarchy = set-pseudo-cumulative-hierarchy V ℕ-map where ℕ-map : raise l1 ℕ → type-pseudo-cumulative-hierarchy V ℕ-map (map-raise zero-ℕ) = empty-set-cumulative-hierarchy ℕ-map (map-raise (succ-ℕ x)) = pair-cumulative-hierarchy ( ℕ-map (map-raise x)) ( singleton-cumulative-hierarchy (ℕ-map (map-raise x))) abstract infinity-axiom-cumulative-hierarchy : ( ∈-cumulative-hierarchy empty-set-cumulative-hierarchy infinity-cumulative-hierarchy) × ( ( x : type-pseudo-cumulative-hierarchy V) → ∈-cumulative-hierarchy x infinity-cumulative-hierarchy → ∈-cumulative-hierarchy ( pair-cumulative-hierarchy x ( singleton-cumulative-hierarchy x)) ( infinity-cumulative-hierarchy)) pr1 infinity-axiom-cumulative-hierarchy = mere-preimage-∈-cumulative-hierarchy ( unit-trunc-Prop (map-raise zero-ℕ , refl)) pr2 infinity-axiom-cumulative-hierarchy x H = mere-preimage-∈-cumulative-hierarchy ( map-trunc-Prop ( λ where ((map-raise n) , refl) → (map-raise (succ-ℕ n) , refl)) ( ∈-cumulative-hierarchy-mere-preimage H))
Cumulative hierarchies satisfy the ∈-induction axiom
∈-induction-cumulative-hierarchy : {l2 : Level} ( P : type-pseudo-cumulative-hierarchy V → UU l2) → ( ( x : type-pseudo-cumulative-hierarchy V) → is-prop (P x)) → ( ( x : type-pseudo-cumulative-hierarchy V) → ( ( y : type-pseudo-cumulative-hierarchy V) → ∈-cumulative-hierarchy y x → P y) → P x) → ( x : type-pseudo-cumulative-hierarchy V) → P x ∈-induction-cumulative-hierarchy P P-prop h = prop-ind-principle-cumulative-hierarchy P P-prop ( λ f IH → h (set-pseudo-cumulative-hierarchy V f) ( λ y m → map-universal-property-trunc-Prop ( P y , P-prop y) ( λ (a , p) → tr P p (IH a)) ( ∈-cumulative-hierarchy-mere-preimage m)))
Cumulative hierarchies satisfy the replacement axiom
abstract replacement-cumulative-hierarchy : ( x : type-pseudo-cumulative-hierarchy V) → ( r : type-pseudo-cumulative-hierarchy V → type-pseudo-cumulative-hierarchy V) → exists-structure ( type-pseudo-cumulative-hierarchy V) ( λ v → ( y : type-pseudo-cumulative-hierarchy V) → ∈-cumulative-hierarchy y v ↔ exists-structure ( type-pseudo-cumulative-hierarchy V) ( λ z → (∈-cumulative-hierarchy z x) × (y = r z))) replacement-cumulative-hierarchy x r = map-universal-property-trunc-Prop ( exists-structure-Prop (type-pseudo-cumulative-hierarchy V) _) ( λ where ( A , f , refl) → unit-trunc-Prop ( ( set-pseudo-cumulative-hierarchy V (r ∘ f)) , ( λ y → ( pair ( λ H → map-trunc-Prop ( λ where ( a , refl) → (f a) , ( mere-preimage-∈-cumulative-hierarchy ( unit-trunc-Prop (a , refl))) , ( refl)) ( ∈-cumulative-hierarchy-mere-preimage H)) ( λ H → mere-preimage-∈-cumulative-hierarchy ( map-universal-property-trunc-Prop ( exists-structure-Prop A _) ( λ where ( z , K , refl) → map-trunc-Prop ( λ where (a , refl) → (a , refl)) ( ∈-cumulative-hierarchy-mere-preimage K)) ( H))))))) ( underlying-function-cumulative-hierarchy x)
References
- [dJKFX23]
- Tom de Jong, Nicolai Kraus, Fredrik Nordvall Forsberg, and Chuangjie Xu. Set-Theoretic and Type-Theoretic Ordinals Coincide. In 2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), 1–13. 06 2023. arXiv:2301.10696, doi:10.1109/LICS56636.2023.10175762.
- [UF13]
- The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for Advanced Study, 2013. URL: https://homotopytypetheory.org/book/, arXiv:1308.0729.
External links
- Cumulative hierarchy at Mathswitch
- cumulative hierarchy at Lab
- Cumulative hierarchy at Wikipedia
Recent changes
- 2024-09-23. Fredrik Bakke. Cantor's theorem and diagonal argument (#1185).
- 2024-08-05. Fernando Chu. Definition of ordinals (#1159).
- 2024-05-23. Fredrik Bakke. Fix citation tag configuration for some references (#1143).
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).