The pullback-hom
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2023-02-18.
Last modified on 2024-10-27.
module orthogonal-factorization-systems.pullback-hom where
Imports
open import foundation.commuting-squares-of-maps open import foundation.commuting-triangles-of-maps open import foundation.cones-over-cospan-diagrams open import foundation.cospan-diagrams open import foundation.dependent-pair-types open import foundation.equality-dependent-pair-types open import foundation.equivalences open import foundation.equivalences-arrows open import foundation.fibers-of-maps open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.functoriality-fibers-of-maps open import foundation.functoriality-morphisms-arrows open import foundation.higher-homotopies-morphisms-arrows open import foundation.homotopies open import foundation.homotopies-morphisms-arrows open import foundation.identity-types open import foundation.morphisms-arrows open import foundation.postcomposition-functions open import foundation.precomposition-dependent-functions open import foundation.precomposition-functions open import foundation.pullback-cones open import foundation.pullbacks open import foundation.retractions open import foundation.sections open import foundation.standard-pullbacks open import foundation.transport-along-identifications open import foundation.type-arithmetic-dependent-pair-types open import foundation.type-theoretic-principle-of-choice open import foundation.universal-property-pullbacks open import foundation.universe-levels open import foundation.whiskering-homotopies-composition
Idea
The pullback-hom¶ or
pullback-power¶ of two maps f : A → B
and
g : X → Y
, is the gap map of the
commuting square:
- ∘ f
B → X -------> A → X
| |
g ∘ - | | g ∘ -
∨ ∨
B → Y -------> A → Y.
- ∘ f
More explicitly, the pullback of - ∘ f
and g ∘ -
is the type of
morphisms of arrows from f
to g
, while the
domain of the pullback-hom is the type B → X
of diagonal fillers for morphisms
of arrows from f
to g
. The pullback-hom can therefore be described as a map
pullback-hom f g : (B → X) → hom-arrow f g
This map takes a map j : B → X
as in the diagram
A X
| ∧ |
f | j/ | g
∨ / ∨
B Y
to the morphism of arrows from f
to g
as
in the diagram
j ∘ f
A ----------> X
| |
f | refl-htpy | g
∨ ∨
B ----------> Y.
g ∘ j
The fibers of the pullback-hom are
lifting squares.
The pullback-hom is therefore a fundamental operation in the study of
lifting conditions
and
orthogonality conditions:
The pullback-hom of f
and g
is an
equivalence if and only if f
is left
orthogonal to g
, while the pullback-hom of f
and g
is
surjective if and only if f
satisfies the
left lifting property to g
.
Notation. There are two common ways to denote the pullback-hom: Some authors
use f ⋔ g
, while other authors use ⟨f , g⟩
. Both notations can be used,
depending on what perspective of the pullback-hom is emphasized. The
pitchfork-notation f ⋔ g
is used more often in settings where a lifting
property of f
and g
is emphasized, while the hom-notation ⟨f , g⟩
is used
when the pullback-hom is thought of in terms of hom-sets. The latter notation is
useful for instance, if one wants to emphasize an adjoint relation between the
pullback-hom and the
pushout-product:
⟨f □ g , h⟩ = ⟨f , ⟨g , h⟩⟩.
Definitions
The pullback-hom
The pullback-hom f ⋔ g
is the map (B → X) → hom-arrow f g
, that takes a
diagonal map j
from the codomain of f
to the domain of g
to the morphism
of arrows
j ∘ f
A ----------> X
| |
f | refl-htpy | g
∨ ∨
B ----------> Y.
g ∘ j
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {X : UU l2} {B : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where map-domain-pullback-hom : (B → X) → A → X map-domain-pullback-hom j = j ∘ f map-codomain-pullback-hom : (B → X) → B → Y map-codomain-pullback-hom j = g ∘ j coh-pullback-hom : (j : B → X) → coherence-hom-arrow f g ( map-domain-pullback-hom j) ( map-codomain-pullback-hom j) coh-pullback-hom j = refl-htpy pullback-hom : (B → X) → hom-arrow f g pullback-hom j = ( map-domain-pullback-hom j , map-codomain-pullback-hom j , coh-pullback-hom j) infix 30 _⋔_ _⋔_ = pullback-hom
The symbol ⋔
is the pitchfork (agda-input:
\pitchfork
).
The cone structure on the codomain of the pullback-hom
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {X : UU l2} {B : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where left-projection-hom-arrow-pullback-hom : hom-arrow f g → B → Y left-projection-hom-arrow-pullback-hom = map-codomain-hom-arrow f g right-projection-hom-arrow-pullback-hom : hom-arrow f g → A → X right-projection-hom-arrow-pullback-hom = map-domain-hom-arrow f g coherence-square-cone-hom-arrow-pullback-hom : coherence-square-maps ( right-projection-hom-arrow-pullback-hom) ( left-projection-hom-arrow-pullback-hom) ( postcomp A g) ( precomp f Y) coherence-square-cone-hom-arrow-pullback-hom h = eq-htpy (coh-hom-arrow f g h) cone-hom-arrow-pullback-hom : cone (precomp f Y) (postcomp A g) (hom-arrow f g) pr1 cone-hom-arrow-pullback-hom = left-projection-hom-arrow-pullback-hom pr1 (pr2 cone-hom-arrow-pullback-hom) = right-projection-hom-arrow-pullback-hom pr2 (pr2 cone-hom-arrow-pullback-hom) = coherence-square-cone-hom-arrow-pullback-hom
The standard pullback of the defining cospan of the pullback-hom
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where type-standard-pullback-hom : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) type-standard-pullback-hom = standard-pullback (precomp f Y) (postcomp A g) module _ (h : type-standard-pullback-hom) where map-domain-standard-pullback-hom : A → X map-domain-standard-pullback-hom = pr1 (pr2 h) map-codomain-standard-pullback-hom : B → Y map-codomain-standard-pullback-hom = pr1 h eq-coh-standard-pullback-hom : precomp f Y map-codomain-standard-pullback-hom = postcomp A g map-domain-standard-pullback-hom eq-coh-standard-pullback-hom = pr2 (pr2 h) coh-standard-pullback-hom : precomp f Y map-codomain-standard-pullback-hom ~ postcomp A g map-domain-standard-pullback-hom coh-standard-pullback-hom = htpy-eq eq-coh-standard-pullback-hom
The cone of the diagram defining the pullback-hom
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where cone-pullback-hom : cone (precomp f Y) (postcomp A g) (B → X) cone-pullback-hom = (postcomp B g , precomp f X , refl-htpy) gap-pullback-hom : (B → X) → type-standard-pullback-hom f g gap-pullback-hom = gap (precomp f Y) (postcomp A g) cone-pullback-hom
The equivalence of the codomain of the pullback-hom with the standard pullback
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where map-compute-pullback-hom : hom-arrow f g → type-standard-pullback-hom f g map-compute-pullback-hom h = ( map-codomain-hom-arrow f g h , map-domain-hom-arrow f g h , eq-htpy (coh-hom-arrow f g h)) map-inv-compute-pullback-hom : type-standard-pullback-hom f g → hom-arrow f g map-inv-compute-pullback-hom h = ( map-domain-standard-pullback-hom f g h , map-codomain-standard-pullback-hom f g h , coh-standard-pullback-hom f g h) is-section-map-inv-compute-pullback-hom : is-section map-compute-pullback-hom map-inv-compute-pullback-hom is-section-map-inv-compute-pullback-hom h = eq-pair-eq-fiber ( eq-pair-eq-fiber ( is-retraction-eq-htpy (eq-coh-standard-pullback-hom f g h))) is-retraction-map-inv-compute-pullback-hom : is-retraction map-compute-pullback-hom map-inv-compute-pullback-hom is-retraction-map-inv-compute-pullback-hom h = eq-pair-eq-fiber ( eq-pair-eq-fiber (is-section-eq-htpy (coh-hom-arrow f g h))) is-equiv-map-compute-pullback-hom : is-equiv map-compute-pullback-hom is-equiv-map-compute-pullback-hom = is-equiv-is-invertible ( map-inv-compute-pullback-hom) ( is-section-map-inv-compute-pullback-hom) ( is-retraction-map-inv-compute-pullback-hom) is-equiv-map-inv-compute-pullback-hom : is-equiv map-inv-compute-pullback-hom is-equiv-map-inv-compute-pullback-hom = is-equiv-is-invertible ( map-compute-pullback-hom) ( is-retraction-map-inv-compute-pullback-hom) ( is-section-map-inv-compute-pullback-hom) compute-pullback-hom : hom-arrow f g ≃ type-standard-pullback-hom f g pr1 compute-pullback-hom = map-compute-pullback-hom pr2 compute-pullback-hom = is-equiv-map-compute-pullback-hom inv-compute-pullback-hom : type-standard-pullback-hom f g ≃ hom-arrow f g pr1 inv-compute-pullback-hom = map-inv-compute-pullback-hom pr2 inv-compute-pullback-hom = is-equiv-map-inv-compute-pullback-hom
The commuting triangle of the pullback-hom and the gap map
We construct the homotopy witnessing that the triangle of maps
(B → X)
/ \
pullback-hom / \ gap
∨ ∨
hom-arrow f g -----> type-standard-pullback-hom f g
commutes. The bottom map in this triangle is the underlying map of the
equivalence hom-arrow f g ≃ type-stanard-pullback-hom f g
constructed above.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where triangle-pullback-hom : coherence-triangle-maps' ( gap-pullback-hom f g) ( gap (precomp f Y) (postcomp A g) (cone-hom-arrow' f g)) ( pullback-hom f g) triangle-pullback-hom j = eq-pair-eq-fiber (eq-pair-eq-fiber (is-retraction-eq-htpy refl))
The action on homotopies of the pullback-hom
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {X : UU l2} {B : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) {j k : B → X} (H : j ~ k) where htpy-domain-htpy-hom-arrow-htpy : map-domain-pullback-hom f g j ~ map-domain-pullback-hom f g k htpy-domain-htpy-hom-arrow-htpy = H ·r f htpy-codomain-htpy-hom-arrow-htpy : map-codomain-pullback-hom f g j ~ map-codomain-pullback-hom f g k htpy-codomain-htpy-hom-arrow-htpy = g ·l H coh-htpy-hom-arrow-htpy : coherence-htpy-hom-arrow f g ( pullback-hom f g j) ( pullback-hom f g k) ( htpy-domain-htpy-hom-arrow-htpy) ( htpy-codomain-htpy-hom-arrow-htpy) coh-htpy-hom-arrow-htpy = inv-htpy right-unit-htpy htpy-hom-arrow-htpy : htpy-hom-arrow f g (pullback-hom f g j) (pullback-hom f g k) pr1 htpy-hom-arrow-htpy = htpy-domain-htpy-hom-arrow-htpy pr1 (pr2 htpy-hom-arrow-htpy) = htpy-codomain-htpy-hom-arrow-htpy pr2 (pr2 htpy-hom-arrow-htpy) = coh-htpy-hom-arrow-htpy
Properties
The cone of the pullback-hom is a pullback
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where is-pullback-cone-hom-arrow-pullback-hom : is-pullback ( precomp f Y) ( postcomp A g) ( cone-hom-arrow-pullback-hom f g) is-pullback-cone-hom-arrow-pullback-hom = is-equiv-map-compute-pullback-hom f g pullback-cone-hom-arrow-pullback-hom : pullback-cone (cospan-diagram-hom-arrow f g) (l1 ⊔ l2 ⊔ l3 ⊔ l4) pullback-cone-hom-arrow-pullback-hom = ( hom-arrow f g , cone-hom-arrow-pullback-hom f g) , ( is-pullback-cone-hom-arrow-pullback-hom) universal-property-pullback-cone-hom-arrow-pullback-hom : universal-property-pullback ( precomp f Y) ( postcomp A g) ( cone-hom-arrow-pullback-hom f g) universal-property-pullback-cone-hom-arrow-pullback-hom = universal-property-pullback-is-pullback ( precomp f Y) ( postcomp A g) ( cone-hom-arrow-pullback-hom f g) ( is-pullback-cone-hom-arrow-pullback-hom)
The action on homotopies at refl-htpy
is the reflexivity homotopy of morphisms of arrows
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {X : UU l2} {B : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) {j : B → X} where htpy-domain-compute-refl-htpy-hom-arrow-htpy : htpy-domain-htpy-hom-arrow-htpy f g (refl-htpy' j) ~ htpy-domain-refl-htpy-hom-arrow f g (pullback-hom f g j) htpy-domain-compute-refl-htpy-hom-arrow-htpy = refl-htpy htpy-codomain-compute-refl-htpy-hom-arrow-htpy : htpy-codomain-htpy-hom-arrow-htpy f g (refl-htpy' j) ~ htpy-codomain-refl-htpy-hom-arrow f g (pullback-hom f g j) htpy-codomain-compute-refl-htpy-hom-arrow-htpy = refl-htpy coh-compute-refl-htpy-hom-arrow-htpy : coherence-htpy-htpy-hom-arrow f g ( pullback-hom f g j) ( pullback-hom f g j) ( htpy-hom-arrow-htpy f g refl-htpy) ( refl-htpy-hom-arrow f g (pullback-hom f g j)) ( htpy-domain-compute-refl-htpy-hom-arrow-htpy) ( htpy-codomain-compute-refl-htpy-hom-arrow-htpy) coh-compute-refl-htpy-hom-arrow-htpy = refl-htpy compute-refl-htpy-hom-arrow-htpy : htpy-htpy-hom-arrow f g ( pullback-hom f g j) ( pullback-hom f g j) ( htpy-hom-arrow-htpy f g refl-htpy) ( refl-htpy-hom-arrow f g (pullback-hom f g j)) pr1 compute-refl-htpy-hom-arrow-htpy = htpy-domain-compute-refl-htpy-hom-arrow-htpy pr1 (pr2 compute-refl-htpy-hom-arrow-htpy) = htpy-codomain-compute-refl-htpy-hom-arrow-htpy pr2 (pr2 compute-refl-htpy-hom-arrow-htpy) = coh-compute-refl-htpy-hom-arrow-htpy
Computing the pullback-hom of a composite
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {S : UU l5} (f : A → B) (g : X → Y) (h : Y → S) where map-domain-left-whisker-hom-arrow : hom-arrow f g → A → X map-domain-left-whisker-hom-arrow α = map-domain-hom-arrow f g α map-codomain-left-whisker-hom-arrow : hom-arrow f g → B → S map-codomain-left-whisker-hom-arrow α = h ∘ map-codomain-hom-arrow f g α coh-left-whisker-hom-arrow : (α : hom-arrow f g) → coherence-square-maps ( map-domain-left-whisker-hom-arrow α) ( f) ( h ∘ g) ( map-codomain-left-whisker-hom-arrow α) coh-left-whisker-hom-arrow α = h ·l (coh-hom-arrow f g α) left-whisker-hom-arrow : hom-arrow f g → hom-arrow f (h ∘ g) pr1 (left-whisker-hom-arrow α) = map-domain-left-whisker-hom-arrow α pr1 (pr2 (left-whisker-hom-arrow α)) = map-codomain-left-whisker-hom-arrow α pr2 (pr2 (left-whisker-hom-arrow α)) = coh-left-whisker-hom-arrow α compute-pullback-hom-comp-right : coherence-triangle-maps ( pullback-hom f (h ∘ g)) ( left-whisker-hom-arrow) ( pullback-hom f g) compute-pullback-hom-comp-right = refl-htpy module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} {S : UU l5} (f : A → B) (g : X → Y) (h : S → A) where map-domain-right-whisker-hom-arrow : hom-arrow f g → S → X map-domain-right-whisker-hom-arrow α = map-domain-hom-arrow f g α ∘ h map-codomain-right-whisker-hom-arrow : hom-arrow f g → B → Y map-codomain-right-whisker-hom-arrow α = map-codomain-hom-arrow f g α coh-right-whisker-hom-arrow : (α : hom-arrow f g) → coherence-hom-arrow (f ∘ h) g ( map-domain-right-whisker-hom-arrow α) ( map-codomain-right-whisker-hom-arrow α) coh-right-whisker-hom-arrow α = coh-hom-arrow f g α ·r h right-whisker-hom-arrow : hom-arrow f g → hom-arrow (f ∘ h) g pr1 (right-whisker-hom-arrow α) = map-domain-right-whisker-hom-arrow α pr1 (pr2 (right-whisker-hom-arrow α)) = map-codomain-right-whisker-hom-arrow α pr2 (pr2 (right-whisker-hom-arrow α)) = coh-right-whisker-hom-arrow α compute-pullback-hom-comp-left : coherence-triangle-maps ( pullback-hom (f ∘ h) g) ( right-whisker-hom-arrow) ( pullback-hom f g) compute-pullback-hom-comp-left = refl-htpy
Computing the fiber map between the vertical maps in the pullback-hom square
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) where compute-map-fiber-vertical-pullback-hom : (h : B → Y) → equiv-arrow ( precomp-Π f (fiber g ∘ h)) ( map-fiber-vertical-map-cone ( precomp f Y) ( postcomp A g) ( cone-pullback-hom f g) ( h)) pr1 (compute-map-fiber-vertical-pullback-hom h) = compute-Π-fiber-postcomp B g h pr1 (pr2 (compute-map-fiber-vertical-pullback-hom h)) = compute-Π-fiber-postcomp A g (h ∘ f) pr2 (pr2 (compute-map-fiber-vertical-pullback-hom h)) H = eq-Eq-fiber ( postcomp A g) ( precomp f Y h) ( refl) ( compute-eq-htpy-ap-precomp f (pr2 (map-distributive-Π-Σ H)))
Table of files about pullbacks
The following table lists files that are about pullbacks as a general concept.
External links
- Pullback-power at the Lab
A wikidata identifier for this concept is unavailable.
References
- [RV22]
- Emily Riehl and Dominic Verity. Elements of ∞-Category Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2022. ISBN 978-1-108-83798-9. URL: https://math.jhu.edu/~eriehl/elements.pdf, doi:10.1017/9781108936880.
Recent changes
- 2024-10-27. Fredrik Bakke. Functoriality of morphisms of arrows (#1130).
- 2024-04-25. Fredrik Bakke. chore: Fix arrowheads in character diagrams (#1124).
- 2024-03-22. Fredrik Bakke. Additions to cartesian morphisms (#1087).
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2024-03-02. Fredrik Bakke. Factor out standard pullbacks (#1042).