Complements of decidable subtypes of finite types

Content created by Louis Wasserman.

Created on 2025-09-28.
Last modified on 2025-09-29.

module univalent-combinatorics.complements-decidable-subtypes where
Imports
open import foundation.universe-levels

open import logic.complements-decidable-subtypes

open import univalent-combinatorics.coproduct-types
open import univalent-combinatorics.decidable-subtypes
open import univalent-combinatorics.equivalences
open import univalent-combinatorics.finite-types

Idea

The complement of a decidable subtype of a finite type is its complement as a decidable subtype of a type.

Definition

complement-subset-Finite-Type :
  {l1 l2 : Level}  (X : Finite-Type l1)  subset-Finite-Type l2 X 
  subset-Finite-Type l2 X
complement-subset-Finite-Type _ = complement-decidable-subtype

module _
  {l1 l2 : Level} (X : Finite-Type l1) (P : subset-Finite-Type l2 X)
  where

  type-complement-subset-Finite-Type : UU (l1  l2)
  type-complement-subset-Finite-Type =
    type-subset-Finite-Type X (complement-subset-Finite-Type X P)

  inclusion-complement-subset-Finite-Type :
    type-complement-subset-Finite-Type  type-Finite-Type X
  inclusion-complement-subset-Finite-Type =
    inclusion-subset-Finite-Type X (complement-subset-Finite-Type X P)

Properties

The complement of a decidable subtype of a finite type is finite

module _
  {l1 l2 : Level} (X : Finite-Type l1) (P : subset-Finite-Type l2 X)
  where

  finite-type-complement-subset-Finite-Type : Finite-Type (l1  l2)
  finite-type-complement-subset-Finite-Type =
    finite-type-subset-Finite-Type X (complement-subset-Finite-Type X P)

The coproduct decomposition associated to a decidable subset of a finite type

Every decidable subtype P ⊆ A of a finite type A decomposes A into a coproduct A ≃ (P + A∖P).

module _
  {l1 l2 : Level} (A : Finite-Type l1) (P : subset-Finite-Type l2 A)
  where

  equiv-coproduct-decomposition-subset-Finite-Type :
    equiv-Finite-Type
      ( A)
      ( coproduct-Finite-Type
        ( finite-type-subset-Finite-Type A P)
        ( finite-type-complement-subset-Finite-Type A P))
  equiv-coproduct-decomposition-subset-Finite-Type =
    equiv-coproduct-decomposition-decidable-subtype P

Recent changes