Complements of decidable subtypes of finite types
Content created by Louis Wasserman.
Created on 2025-09-28.
Last modified on 2025-09-29.
module univalent-combinatorics.complements-decidable-subtypes where
Imports
open import foundation.universe-levels open import logic.complements-decidable-subtypes open import univalent-combinatorics.coproduct-types open import univalent-combinatorics.decidable-subtypes open import univalent-combinatorics.equivalences open import univalent-combinatorics.finite-types
Idea
The complement¶ of a decidable subtype of a finite type is its complement as a decidable subtype of a type.
Definition
complement-subset-Finite-Type : {l1 l2 : Level} → (X : Finite-Type l1) → subset-Finite-Type l2 X → subset-Finite-Type l2 X complement-subset-Finite-Type _ = complement-decidable-subtype module _ {l1 l2 : Level} (X : Finite-Type l1) (P : subset-Finite-Type l2 X) where type-complement-subset-Finite-Type : UU (l1 ⊔ l2) type-complement-subset-Finite-Type = type-subset-Finite-Type X (complement-subset-Finite-Type X P) inclusion-complement-subset-Finite-Type : type-complement-subset-Finite-Type → type-Finite-Type X inclusion-complement-subset-Finite-Type = inclusion-subset-Finite-Type X (complement-subset-Finite-Type X P)
Properties
The complement of a decidable subtype of a finite type is finite
module _ {l1 l2 : Level} (X : Finite-Type l1) (P : subset-Finite-Type l2 X) where finite-type-complement-subset-Finite-Type : Finite-Type (l1 ⊔ l2) finite-type-complement-subset-Finite-Type = finite-type-subset-Finite-Type X (complement-subset-Finite-Type X P)
The coproduct decomposition associated to a decidable subset of a finite type
Every decidable subtype P ⊆ A
of a finite type A
decomposes A
into a
coproduct A ≃ (P + A∖P)
.
module _ {l1 l2 : Level} (A : Finite-Type l1) (P : subset-Finite-Type l2 A) where equiv-coproduct-decomposition-subset-Finite-Type : equiv-Finite-Type ( A) ( coproduct-Finite-Type ( finite-type-subset-Finite-Type A P) ( finite-type-complement-subset-Finite-Type A P)) equiv-coproduct-decomposition-subset-Finite-Type = equiv-coproduct-decomposition-decidable-subtype P
Recent changes
- 2025-09-29. Fredrik Bakke. chore: Fix concept pointer in
univalent-combinatorics.complements-decidable-subtypes
(#1554). - 2025-09-28. Louis Wasserman. Interchanging multiplication and evaluation on polynomials (#1543).