Cartier’s delooping of the sign homomorphism
Content created by Egbert Rijke, Fredrik Bakke, Eléonore Mangel, Jonathan Prieto-Cubides, Elisabeth Stenholm, Julian KG, fernabnor and louismntnu.
Created on 2022-05-10.
Last modified on 2024-03-12.
{-# OPTIONS --lossy-unification #-} module finite-group-theory.cartier-delooping-sign-homomorphism where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import finite-group-theory.delooping-sign-homomorphism open import finite-group-theory.finite-type-groups open import finite-group-theory.sign-homomorphism open import finite-group-theory.transpositions open import foundation.action-on-equivalences-type-families-over-subuniverses open import foundation.action-on-identifications-functions open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalence-relations open import foundation.equivalences open import foundation.identity-types open import foundation.mere-equivalences open import foundation.negation open import foundation.propositional-truncations open import foundation.raising-universe-levels open import foundation.transport-along-identifications open import foundation.type-theoretic-principle-of-choice open import foundation.unit-type open import foundation.universe-levels open import group-theory.concrete-groups open import group-theory.homomorphisms-concrete-groups open import group-theory.homomorphisms-groups open import group-theory.isomorphisms-groups open import group-theory.loop-groups-sets open import group-theory.symmetric-groups open import univalent-combinatorics.2-element-decidable-subtypes open import univalent-combinatorics.orientations-complete-undirected-graph open import univalent-combinatorics.standard-finite-types
Idea
We define the delooping of the sign homomorphism by using a method of Cartier.
Definitions
module _ { l : Level} where not-even-difference-action-equiv-family-on-subuniverse : (n : ℕ) (Y : 2-Element-Decidable-Subtype l (raise-Fin l (n +ℕ 2))) → ¬ ( sim-equivalence-relation ( even-difference-orientation-Complete-Undirected-Graph ( n +ℕ 2) ( raise-Fin l (n +ℕ 2) , unit-trunc-Prop (compute-raise-Fin l (n +ℕ 2)))) ( orientation-aut-count ( n +ℕ 2 , compute-raise l (Fin (n +ℕ 2))) ( star) ( transposition Y)) ( map-equiv ( action-equiv-family-over-subuniverse ( mere-equiv-Prop (Fin (n +ℕ 2))) ( orientation-Complete-Undirected-Graph (n +ℕ 2)) ( raise l (Fin (n +ℕ 2)) , unit-trunc-Prop (compute-raise-Fin l (n +ℕ 2))) ( raise l (Fin (n +ℕ 2)) , unit-trunc-Prop (compute-raise-Fin l (n +ℕ 2))) ( transposition Y)) ( orientation-aut-count (n +ℕ 2 , compute-raise l (Fin (n +ℕ 2))) star (transposition Y)))) not-even-difference-action-equiv-family-on-subuniverse n = tr ( λ f → ( Y : 2-Element-Decidable-Subtype l ( raise-Fin l (n +ℕ 2))) → ¬ ( sim-equivalence-relation ( even-difference-orientation-Complete-Undirected-Graph ( n +ℕ 2) ( raise-Fin l (n +ℕ 2) , unit-trunc-Prop (compute-raise-Fin l (n +ℕ 2)))) ( orientation-aut-count ( n +ℕ 2 , compute-raise l (Fin (n +ℕ 2))) ( star) ( transposition Y)) ( map-equiv ( f ( raise l (Fin (n +ℕ 2)) , unit-trunc-Prop (compute-raise-Fin l (n +ℕ 2))) ( raise l (Fin (n +ℕ 2)) , unit-trunc-Prop (compute-raise-Fin l (n +ℕ 2))) ( transposition Y)) ( orientation-aut-count ( n +ℕ 2 , compute-raise l (Fin (n +ℕ 2))) ( star) ( transposition Y))))) ( ap pr1 { x = orientation-complete-undirected-graph-equiv (n +ℕ 2) , preserves-id-equiv-orientation-complete-undirected-graph-equiv ( n +ℕ 2)} { y = ( action-equiv-family-over-subuniverse ( mere-equiv-Prop (Fin (n +ℕ 2))) ( orientation-Complete-Undirected-Graph (n +ℕ 2))) , ( compute-id-equiv-action-equiv-family-over-subuniverse ( mere-equiv-Prop (Fin (n +ℕ 2))) ( orientation-Complete-Undirected-Graph (n +ℕ 2)))} ( eq-is-contr ( is-contr-equiv' _ ( distributive-Π-Σ) ( is-contr-Π ( unique-action-equiv-family-over-subuniverse ( mere-equiv-Prop (Fin (n +ℕ 2))) ( orientation-Complete-Undirected-Graph (n +ℕ 2))))))) ( not-even-difference-orientation-aut-transposition-count (n +ℕ 2 , (compute-raise l (Fin (n +ℕ 2)))) (star)) cartier-delooping-sign : (n : ℕ) → hom-Concrete-Group (UU-Fin-Group l n) (UU-Fin-Group (lsuc l) 2) cartier-delooping-sign = quotient-delooping-sign ( orientation-Complete-Undirected-Graph) ( even-difference-orientation-Complete-Undirected-Graph) ( λ n _ → is-decidable-even-difference-orientation-Complete-Undirected-Graph n) ( equiv-fin-2-quotient-sign-equiv-Fin) ( λ n → orientation-aut-count (n +ℕ 2 , compute-raise l (Fin (n +ℕ 2))) (star)) ( not-even-difference-action-equiv-family-on-subuniverse) eq-cartier-delooping-sign-homomorphism : (n : ℕ) → Id ( comp-hom-Group ( symmetric-Group (raise-Fin-Set l (n +ℕ 2))) ( loop-group-Set (raise-Fin-Set l (n +ℕ 2))) ( group-Concrete-Group (UU-Fin-Group (lsuc l) 2)) ( comp-hom-Group ( loop-group-Set (raise-Fin-Set l (n +ℕ 2))) ( group-Concrete-Group (UU-Fin-Group l (n +ℕ 2))) ( group-Concrete-Group (UU-Fin-Group (lsuc l) 2)) ( hom-group-hom-Concrete-Group ( UU-Fin-Group l (n +ℕ 2)) ( UU-Fin-Group (lsuc l) 2) ( cartier-delooping-sign (n +ℕ 2))) ( hom-inv-iso-Group ( group-Concrete-Group (UU-Fin-Group l (n +ℕ 2))) ( loop-group-Set (raise-Fin-Set l (n +ℕ 2))) ( iso-loop-group-fin-UU-Fin-Group l (n +ℕ 2)))) ( hom-inv-symmetric-group-loop-group-Set (raise-Fin-Set l (n +ℕ 2)))) ( comp-hom-Group ( symmetric-Group (raise-Fin-Set l (n +ℕ 2))) ( symmetric-Group (Fin-Set (n +ℕ 2))) ( group-Concrete-Group (UU-Fin-Group (lsuc l) 2)) ( comp-hom-Group ( symmetric-Group (Fin-Set (n +ℕ 2))) ( symmetric-Group (Fin-Set 2)) ( group-Concrete-Group (UU-Fin-Group (lsuc l) 2)) ( symmetric-abstract-UU-fin-group-quotient-hom ( orientation-Complete-Undirected-Graph) ( even-difference-orientation-Complete-Undirected-Graph) ( λ n _ → is-decidable-even-difference-orientation-Complete-Undirected-Graph ( n)) ( equiv-fin-2-quotient-sign-equiv-Fin) ( λ n → orientation-aut-count ( n +ℕ 2 , compute-raise l (Fin (n +ℕ 2))) ( star)) ( not-even-difference-action-equiv-family-on-subuniverse) ( n)) ( sign-homomorphism ( n +ℕ 2) ( Fin (n +ℕ 2) , unit-trunc-Prop id-equiv))) ( hom-inv-symmetric-group-equiv-Set ( Fin-Set (n +ℕ 2)) ( raise-Fin-Set l (n +ℕ 2)) ( compute-raise l (Fin (n +ℕ 2))))) eq-cartier-delooping-sign-homomorphism = eq-quotient-delooping-sign-homomorphism ( orientation-Complete-Undirected-Graph) ( even-difference-orientation-Complete-Undirected-Graph) ( λ n _ → is-decidable-even-difference-orientation-Complete-Undirected-Graph n) ( equiv-fin-2-quotient-sign-equiv-Fin) ( λ n → orientation-aut-count (n +ℕ 2 , compute-raise l (Fin (n +ℕ 2))) (star)) ( not-even-difference-action-equiv-family-on-subuniverse)
References
- [MR23]
- Éléonore Mangel and Egbert Rijke. Delooping the sign homomorphism in univalent mathematics. 01 2023. arXiv:2301.10011.
Recent changes
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-11-04. Fredrik Bakke. Small fixes concrete groups (#897).
- 2023-09-12. Egbert Rijke. Beyond foundation (#751).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).