Families of types local at a map
Content created by Fredrik Bakke.
Created on 2024-11-19.
Last modified on 2024-11-19.
module orthogonal-factorization-systems.families-of-types-local-at-maps where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.precomposition-functions open import foundation.propositions open import foundation.universe-levels open import orthogonal-factorization-systems.orthogonal-maps open import orthogonal-factorization-systems.types-local-at-maps
Idea
A family of types B : A → UU l
is said to be
local¶
at a map f : X → Y
, or f
-local, if every
fiber is.
Definition
module _ {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) {A : UU l3} (B : A → UU l4) where is-local-family : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4) is-local-family = (x : A) → is-local f (B x) is-property-is-local-family : is-prop is-local-family is-property-is-local-family = is-prop-Π (λ x → is-property-is-equiv (precomp f (B x))) is-local-family-Prop : Prop (l1 ⊔ l2 ⊔ l3 ⊔ l4) pr1 is-local-family-Prop = is-local-family pr2 is-local-family-Prop = is-property-is-local-family
Properties
A family is f
-local if and only if it is f
-orthogonal
This remains to be formalized.
See also
Recent changes
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).