Extensions of signatures
Content created by Fredrik Bakke.
Created on 2025-10-31.
Last modified on 2025-10-31.
module universal-algebra.extensions-signatures where
Imports
open import elementary-number-theory.natural-numbers open import foundation.cartesian-product-types open import foundation.dependent-pair-types open import foundation.embeddings open import foundation.identity-types open import foundation.universe-levels open import universal-algebra.signatures
Idea
An
extension¶
of a
single-sorted finitary algebraic signature
σ is a signature τ such that σ embeds
into τ via an arity-preserving map.
Definitions
The predicate that a signature is an extension of a signature
is-extension-of-signature : {l1 l2 : Level} → signature l1 → signature l2 → UU (l1 ⊔ l2) is-extension-of-signature σ τ = Σ ( operation-signature σ ↪ operation-signature τ) ( λ f → ( (op : operation-signature σ) → arity-operation-signature σ op = arity-operation-signature τ (map-emb f op))) module _ {l1 l2 : Level} (σ : signature l1) (τ : signature l2) (E : is-extension-of-signature σ τ) where emb-inclusion-is-extension-of-signature : operation-signature σ ↪ operation-signature τ emb-inclusion-is-extension-of-signature = pr1 E inclusion-is-extension-of-signature : operation-signature σ → operation-signature τ inclusion-is-extension-of-signature = map-emb emb-inclusion-is-extension-of-signature is-emb-inclusion-is-extension-of-signature : is-emb inclusion-is-extension-of-signature is-emb-inclusion-is-extension-of-signature = is-emb-map-emb emb-inclusion-is-extension-of-signature preserves-arity-inclusion-is-extension-of-signature : (op : operation-signature σ) → arity-operation-signature σ op = arity-operation-signature τ (inclusion-is-extension-of-signature op) preserves-arity-inclusion-is-extension-of-signature = pr2 E
Recent changes
- 2025-10-31. Fredrik Bakke. Refactor
universal-algebra(#1657).