Extensions of signatures

Content created by Fredrik Bakke.

Created on 2025-10-31.
Last modified on 2025-10-31.

module universal-algebra.extensions-signatures where
Imports
open import elementary-number-theory.natural-numbers

open import foundation.cartesian-product-types
open import foundation.dependent-pair-types
open import foundation.embeddings
open import foundation.identity-types
open import foundation.universe-levels

open import universal-algebra.signatures

Idea

An extension of a single-sorted finitary algebraic signature σ is a signature τ such that σ embeds into τ via an arity-preserving map.

Definitions

The predicate that a signature is an extension of a signature

is-extension-of-signature :
  {l1 l2 : Level} 
  signature l1  signature l2  UU (l1  l2)
is-extension-of-signature σ τ =
  Σ ( operation-signature σ  operation-signature τ)
    ( λ f 
      ( (op : operation-signature σ) 
        arity-operation-signature σ op 
        arity-operation-signature τ (map-emb f op)))

module _
  {l1 l2 : Level}
  (σ : signature l1) (τ : signature l2)
  (E : is-extension-of-signature σ τ)
  where

  emb-inclusion-is-extension-of-signature :
    operation-signature σ  operation-signature τ
  emb-inclusion-is-extension-of-signature = pr1 E

  inclusion-is-extension-of-signature :
    operation-signature σ  operation-signature τ
  inclusion-is-extension-of-signature =
    map-emb emb-inclusion-is-extension-of-signature

  is-emb-inclusion-is-extension-of-signature :
    is-emb inclusion-is-extension-of-signature
  is-emb-inclusion-is-extension-of-signature =
    is-emb-map-emb emb-inclusion-is-extension-of-signature

  preserves-arity-inclusion-is-extension-of-signature :
    (op : operation-signature σ) 
    arity-operation-signature σ op 
    arity-operation-signature τ (inclusion-is-extension-of-signature op)
  preserves-arity-inclusion-is-extension-of-signature = pr2 E

Recent changes