Multiples of elements in rings
Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.
Created on 2023-09-10.
Last modified on 2023-09-21.
module ring-theory.multiples-of-elements-rings where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.multiplication-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import group-theory.multiples-of-elements-abelian-groups open import ring-theory.rings
Idea
For any ring R
there is a multiplication operation
ℕ → R → R
, which we write informally as n x ↦ n · x
. This operation is
defined by iteratively adding x
with
itself n
times.
Definition
Natural number multiples of ring elements
module _ {l : Level} (R : Ring l) where multiple-Ring : ℕ → type-Ring R → type-Ring R multiple-Ring = multiple-Ab (ab-Ring R)
The predicate of being a natural multiple of an element in an ring
We say that an element y
is a multiple of an element x
if there
exists a number n
such that
nx = y
.
module _ {l : Level} (R : Ring l) where is-multiple-of-element-prop-Ring : (x y : type-Ring R) → Prop l is-multiple-of-element-prop-Ring = is-multiple-of-element-prop-Ab (ab-Ring R) is-multiple-of-element-Ring : (x y : type-Ring R) → UU l is-multiple-of-element-Ring = is-multiple-of-element-Ab (ab-Ring R) is-prop-is-multiple-of-element-Ring : (x y : type-Ring R) → is-prop (is-multiple-of-element-Ring x y) is-prop-is-multiple-of-element-Ring = is-prop-is-multiple-of-element-Ab (ab-Ring R)
Properties
n · 0 = 0
module _ {l : Level} (R : Ring l) where multiple-zero-Ring : (n : ℕ) → multiple-Ring R n (zero-Ring R) = zero-Ring R multiple-zero-Ring = multiple-zero-Ab (ab-Ring R)
(n + 1) · x = n · x + x
module _ {l : Level} (R : Ring l) where multiple-succ-Ring : (n : ℕ) (x : type-Ring R) → multiple-Ring R (succ-ℕ n) x = add-Ring R (multiple-Ring R n x) x multiple-succ-Ring = multiple-succ-Ab (ab-Ring R)
(n + 1) · x = x + n · x
module _ {l : Level} (R : Ring l) where multiple-succ-Ring' : (n : ℕ) (x : type-Ring R) → multiple-Ring R (succ-ℕ n) x = add-Ring R x (multiple-Ring R n x) multiple-succ-Ring' = multiple-succ-Ab' (ab-Ring R)
Multiples by sums of natural numbers are products of multiples
module _ {l : Level} (R : Ring l) where right-distributive-multiple-add-Ring : (m n : ℕ) {x : type-Ring R} → multiple-Ring R (m +ℕ n) x = add-Ring R (multiple-Ring R m x) (multiple-Ring R n x) right-distributive-multiple-add-Ring = right-distributive-multiple-add-Ab (ab-Ring R)
Multiples distribute over the sum of x
and y
module _ {l : Level} (R : Ring l) where left-distributive-multiple-add-Ring : (n : ℕ) {x y : type-Ring R} → multiple-Ring R n (add-Ring R x y) = add-Ring R (multiple-Ring R n x) (multiple-Ring R n y) left-distributive-multiple-add-Ring = left-distributive-multiple-add-Ab (ab-Ring R)
Multiples by products of natural numbers are iterated multiples
module _ {l : Level} (R : Ring l) where multiple-mul-Ring : (m n : ℕ) {x : type-Ring R} → multiple-Ring R (m *ℕ n) x = multiple-Ring R n (multiple-Ring R m x) multiple-mul-Ring = multiple-mul-Ab (ab-Ring R)
Recent changes
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-09-10. Egbert Rijke and Fredrik Bakke. Cyclic groups (#723).