Multiples of elements in rings

Content created by Egbert Rijke, Fredrik Bakke and Gregor Perčič.

Created on 2023-09-10.
Last modified on 2023-09-21.

module ring-theory.multiples-of-elements-rings where
Imports
open import elementary-number-theory.addition-natural-numbers
open import elementary-number-theory.multiplication-natural-numbers
open import elementary-number-theory.natural-numbers

open import foundation.identity-types
open import foundation.propositions
open import foundation.universe-levels

open import group-theory.multiples-of-elements-abelian-groups

open import ring-theory.rings

Idea

For any ring R there is a multiplication operation ℕ → R → R, which we write informally as n x ↦ n · x. This operation is defined by iteratively adding x with itself n times.

Definition

Natural number multiples of ring elements

module _
  {l : Level} (R : Ring l)
  where

  multiple-Ring :   type-Ring R  type-Ring R
  multiple-Ring = multiple-Ab (ab-Ring R)

The predicate of being a natural multiple of an element in an ring

We say that an element y is a multiple of an element x if there exists a number n such that nx = y.

module _
  {l : Level} (R : Ring l)
  where

  is-multiple-of-element-prop-Ring :
    (x y : type-Ring R)  Prop l
  is-multiple-of-element-prop-Ring =
    is-multiple-of-element-prop-Ab (ab-Ring R)

  is-multiple-of-element-Ring :
    (x y : type-Ring R)  UU l
  is-multiple-of-element-Ring =
    is-multiple-of-element-Ab (ab-Ring R)

  is-prop-is-multiple-of-element-Ring :
    (x y : type-Ring R) 
    is-prop (is-multiple-of-element-Ring x y)
  is-prop-is-multiple-of-element-Ring =
    is-prop-is-multiple-of-element-Ab (ab-Ring R)

Properties

n · 0 = 0

module _
  {l : Level} (R : Ring l)
  where

  multiple-zero-Ring :
    (n : )  multiple-Ring R n (zero-Ring R)  zero-Ring R
  multiple-zero-Ring = multiple-zero-Ab (ab-Ring R)

(n + 1) · x = n · x + x

module _
  {l : Level} (R : Ring l)
  where

  multiple-succ-Ring :
    (n : ) (x : type-Ring R) 
    multiple-Ring R (succ-ℕ n) x  add-Ring R (multiple-Ring R n x) x
  multiple-succ-Ring = multiple-succ-Ab (ab-Ring R)

(n + 1) · x = x + n · x

module _
  {l : Level} (R : Ring l)
  where

  multiple-succ-Ring' :
    (n : ) (x : type-Ring R) 
    multiple-Ring R (succ-ℕ n) x  add-Ring R x (multiple-Ring R n x)
  multiple-succ-Ring' = multiple-succ-Ab' (ab-Ring R)

Multiples by sums of natural numbers are products of multiples

module _
  {l : Level} (R : Ring l)
  where

  right-distributive-multiple-add-Ring :
    (m n : ) {x : type-Ring R} 
    multiple-Ring R (m +ℕ n) x 
    add-Ring R (multiple-Ring R m x) (multiple-Ring R n x)
  right-distributive-multiple-add-Ring =
    right-distributive-multiple-add-Ab (ab-Ring R)

Multiples distribute over the sum of x and y

module _
  {l : Level} (R : Ring l)
  where

  left-distributive-multiple-add-Ring :
    (n : ) {x y : type-Ring R} 
    multiple-Ring R n (add-Ring R x y) 
    add-Ring R (multiple-Ring R n x) (multiple-Ring R n y)
  left-distributive-multiple-add-Ring =
    left-distributive-multiple-add-Ab (ab-Ring R)

Multiples by products of natural numbers are iterated multiples

module _
  {l : Level} (R : Ring l)
  where

  multiple-mul-Ring :
    (m n : ) {x : type-Ring R} 
    multiple-Ring R (m *ℕ n) x  multiple-Ring R n (multiple-Ring R m x)
  multiple-mul-Ring = multiple-mul-Ab (ab-Ring R)

Recent changes