Positive real numbers
Content created by Louis Wasserman.
Created on 2025-04-02.
Last modified on 2025-04-02.
{-# OPTIONS --lossy-unification #-} module real-numbers.positive-real-numbers where
Imports
open import elementary-number-theory.addition-rational-numbers open import elementary-number-theory.additive-group-of-rational-numbers open import elementary-number-theory.difference-rational-numbers open import elementary-number-theory.positive-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.binary-transport open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.logical-equivalences open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.groups open import real-numbers.addition-real-numbers open import real-numbers.arithmetically-located-dedekind-cuts open import real-numbers.dedekind-real-numbers open import real-numbers.difference-real-numbers open import real-numbers.negation-real-numbers open import real-numbers.rational-real-numbers open import real-numbers.similarity-real-numbers open import real-numbers.strict-inequality-real-numbers
Idea
A real number is positive¶ if zero is strictly less than it.
Definitions
The positivity predicate on real numbers
is-positive-prop-ℝ : {l : Level} → ℝ l → Prop l is-positive-prop-ℝ = le-ℝ-Prop zero-ℝ is-positive-ℝ : {l : Level} → ℝ l → UU l is-positive-ℝ x = type-Prop (is-positive-prop-ℝ x)
The type of positive real numbers
subtype-positive-ℝ : (l : Level) → subtype l (ℝ l) subtype-positive-ℝ l = is-positive-prop-ℝ {l} ℝ⁺ : (l : Level) → UU (lsuc l) ℝ⁺ l = type-subtype (subtype-positive-ℝ l) real-ℝ⁺ : {l : Level} → ℝ⁺ l → ℝ l real-ℝ⁺ = pr1 is-positive-real-ℝ⁺ : {l : Level} → (x : ℝ⁺ l) → is-positive-ℝ (real-ℝ⁺ x) is-positive-real-ℝ⁺ = pr2
Properties
A real number is positive if and only if zero is in its lower cut
module _ {l : Level} (x : ℝ l) where is-positive-iff-zero-in-lower-cut-ℝ : is-positive-ℝ x ↔ is-in-lower-cut-ℝ x zero-ℚ is-positive-iff-zero-in-lower-cut-ℝ = inv-iff (le-real-iff-lower-cut-ℚ zero-ℚ x)
A real number is positive if and only if there is a positive rational number in its lower cut
module _ {l : Level} (x : ℝ l) where exists-ℚ⁺-in-lower-cut-is-positive-ℝ : is-positive-ℝ x → exists ℚ⁺ (λ p → lower-cut-ℝ x (rational-ℚ⁺ p)) exists-ℚ⁺-in-lower-cut-is-positive-ℝ = elim-exists ( ∃ ℚ⁺ (λ p → lower-cut-ℝ x (rational-ℚ⁺ p))) ( λ p (0<p , p<x) → intro-exists (p , is-positive-le-zero-ℚ p 0<p) p<x) is-positive-exists-ℚ⁺-in-lower-cut-ℝ : exists ℚ⁺ (λ p → lower-cut-ℝ x (rational-ℚ⁺ p)) → is-positive-ℝ x is-positive-exists-ℚ⁺-in-lower-cut-ℝ = elim-exists ( is-positive-prop-ℝ x) ( λ (p , pos-p) p<x → intro-exists p (le-zero-is-positive-ℚ p pos-p , p<x)) is-positive-iff-exists-ℚ⁺-in-lower-cut-ℝ : is-positive-ℝ x ↔ exists ℚ⁺ (λ p → lower-cut-ℝ x (rational-ℚ⁺ p)) is-positive-iff-exists-ℚ⁺-in-lower-cut-ℝ = ( exists-ℚ⁺-in-lower-cut-is-positive-ℝ , is-positive-exists-ℚ⁺-in-lower-cut-ℝ) exists-ℚ⁺-in-lower-cut-ℝ⁺ : {l : Level} → (x : ℝ⁺ l) → exists ℚ⁺ (λ p → lower-cut-ℝ (real-ℝ⁺ x) (rational-ℚ⁺ p)) exists-ℚ⁺-in-lower-cut-ℝ⁺ = ind-Σ exists-ℚ⁺-in-lower-cut-is-positive-ℝ
Addition with a positive real number is a strictly inflationary map
abstract le-left-add-real-ℝ⁺ : {l1 l2 : Level} → (x : ℝ l1) (d : ℝ⁺ l2) → le-ℝ x (x +ℝ real-ℝ⁺ d) le-left-add-real-ℝ⁺ x d⁺@(d , pos-d) = let open do-syntax-trunc-Prop (le-ℝ-Prop x (x +ℝ d)) in do r⁺@(r , _) , r<d ← exists-ℚ⁺-in-lower-cut-ℝ⁺ d⁺ (p , q) , (q<p+r , p<x , x<q) ← is-arithmetically-located-ℝ x r⁺ intro-exists ( q) ( x<q , intro-exists ( p , q -ℚ p) ( p<x , le-lower-cut-ℝ ( d) ( q -ℚ p) ( r) ( le-transpose-right-add-ℚ ( q) ( r) ( p) ( tr (le-ℚ q) (commutative-add-ℚ p r) q<p+r)) ( r<d) , inv (is-identity-right-conjugation-add-ℚ p q))) le-right-add-real-ℝ⁺ : {l1 l2 : Level} → (x : ℝ l1) (d : ℝ⁺ l2) → le-ℝ x (real-ℝ⁺ d +ℝ x) le-right-add-real-ℝ⁺ x d = tr (le-ℝ x) (commutative-add-ℝ x (real-ℝ⁺ d)) (le-left-add-real-ℝ⁺ x d)
Subtraction by a positive real number is a strictly deflationary map
abstract le-diff-real-ℝ⁺ : {l1 l2 : Level} → (x : ℝ l1) (d : ℝ⁺ l2) → le-ℝ (x -ℝ real-ℝ⁺ d) x le-diff-real-ℝ⁺ x d⁺@(d , _) = preserves-le-right-sim-ℝ ( x -ℝ d) ( (x -ℝ d) +ℝ d) ( x) ( tr ( λ y → sim-ℝ y x) ( right-swap-add-ℝ x d (neg-ℝ d)) ( cancel-right-add-diff-ℝ x d)) ( le-left-add-real-ℝ⁺ (x -ℝ d) d⁺)
The difference of a real number with a lesser real number is positive
module _ {l1 l2 : Level} (x : ℝ l1) (y : ℝ l2) (H : le-ℝ x y) where is-positive-diff-le-ℝ : is-positive-ℝ (y -ℝ x) is-positive-diff-le-ℝ = preserves-le-left-sim-ℝ ( y -ℝ x) ( x -ℝ x) ( zero-ℝ) ( right-inverse-law-add-ℝ x) ( preserves-le-right-add-ℝ (neg-ℝ x) x y H) positive-diff-le-ℝ : ℝ⁺ (l1 ⊔ l2) positive-diff-le-ℝ = (y -ℝ x , is-positive-diff-le-ℝ)
Positive rational numbers are positive real numbers
is-positive-real-positive-ℚ : (q : ℚ) → is-positive-ℚ q → is-positive-ℝ (real-ℚ q) is-positive-real-positive-ℚ q pos-q = preserves-le-real-ℚ zero-ℚ q (le-zero-is-positive-ℚ q pos-q) is-positive-rational-positive-real-ℚ : (q : ℚ) → is-positive-ℝ (real-ℚ q) → is-positive-ℚ q is-positive-rational-positive-real-ℚ q = elim-exists ( is-positive-prop-ℚ q) ( λ r (0<r , r<q) → is-positive-le-zero-ℚ q (transitive-le-ℚ zero-ℚ r q r<q 0<r)) positive-real-ℚ⁺ : ℚ⁺ → ℝ⁺ lzero positive-real-ℚ⁺ (q , pos-q) = (real-ℚ q , is-positive-real-positive-ℚ q pos-q)
Recent changes
- 2025-04-02. Louis Wasserman. Cauchy completeness of the Dedekind real numbers (#1343).