Standard ternary pullbacks

Content created by Fredrik Bakke.

Created on 2025-01-03.
Last modified on 2025-01-03.

module foundation.standard-ternary-pullbacks where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cones-over-cospan-diagrams
open import foundation.dependent-pair-types
open import foundation.equality-cartesian-product-types
open import foundation.functoriality-cartesian-product-types
open import foundation.identity-types
open import foundation.structure-identity-principle
open import foundation.universe-levels

open import foundation-core.cartesian-product-types
open import foundation-core.commuting-squares-of-maps
open import foundation-core.diagonal-maps-cartesian-products-of-types
open import foundation-core.equality-dependent-pair-types
open import foundation-core.equivalences
open import foundation-core.function-types
open import foundation-core.functoriality-dependent-pair-types
open import foundation-core.homotopies
open import foundation-core.retractions
open import foundation-core.sections
open import foundation-core.type-theoretic-principle-of-choice
open import foundation-core.universal-property-pullbacks
open import foundation-core.whiskering-identifications-concatenation

Idea

Given two cospan of types with a shared vertex B:

      f       g       h       i
  A ----> X <---- B ----> Y <---- C,

we call the standard limit of the diagram the standard ternary pullback. It is defined as the sum

  standard-ternary-pullback f g h i :=
    Σ (a : A) (b : B) (c : C), ((f a = g b) × (h b = i c)).

Definitions

module _
  {l1 l2 l3 l4 l5 : Level}
  {X : UU l1} {Y : UU l2} {A : UU l3} {B : UU l4} {C : UU l5}
  (f : A  X) (g : B  X) (h : B  Y) (i : C  Y)
  where

  standard-ternary-pullback : UU (l1  l2  l3  l4  l5)
  standard-ternary-pullback =
    Σ A  a  Σ B  b  Σ C  c  (f a  g b) × (h b  i c))))

See also

Table of files about pullbacks

The following table lists files that are about pullbacks as a general concept.

ConceptFile
Cospan diagramsfoundation.cospans
Morphisms of cospan diagramsfoundation.morphisms-cospans
Cones over cospan diagramsfoundation.cones-over-cospan-diagrams
The universal property of pullbacks (foundation-core)foundation-core.universal-property-pullbacks
The universal property of pullbacks (foundation)foundation.universal-property-pullbacks
The universal property of fiber productsfoundation.universal-property-fiber-products
Standard pullbacksfoundation.standard-pullbacks
Pullbacks (foundation-core)foundation-core.pullbacks
Pullbacks (foundation)foundation.pullbacks
Pullback conesfoundation.pullback-cones
Functoriality of pullbacksfoundation.functoriality-pullbacks
Cartesian morphisms of arrowsfoundation.cartesian-morphisms-arrows
Dependent products of pullbacksfoundation.dependent-products-pullbacks
Dependent sums of pullbacksfoundation.dependent-sums-pullbacks
Products of pullbacksfoundation.products-pullbacks
Coroducts of pullbacksfoundation.coproducts-pullbacks
Postcomposition of pullbacksfoundation.postcomposition-pullbacks
Pullbacks of subtypesfoundation.pullbacks-subtypes
The pullback-homorthogonal-factorization-systems.pullback-hom
Functoriality of the pullback-homorthogonal-factorization-systems.functoriality-pullback-hom
Pullbacks in precategoriescategory-theory.pullbacks-in-precategories

Recent changes