Standard ternary pullbacks
Content created by Fredrik Bakke.
Created on 2025-01-03.
Last modified on 2025-01-03.
module foundation.standard-ternary-pullbacks where
Imports
open import foundation.action-on-identifications-functions open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.equality-cartesian-product-types open import foundation.functoriality-cartesian-product-types open import foundation.identity-types open import foundation.structure-identity-principle open import foundation.universe-levels open import foundation-core.cartesian-product-types open import foundation-core.commuting-squares-of-maps open import foundation-core.diagonal-maps-cartesian-products-of-types open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.retractions open import foundation-core.sections open import foundation-core.type-theoretic-principle-of-choice open import foundation-core.universal-property-pullbacks open import foundation-core.whiskering-identifications-concatenation
Idea
Given two cospan of types with a shared vertex B
:
f g h i
A ----> X <---- B ----> Y <---- C,
we call the standard limit of the diagram the standard ternary pullback¶. It is defined as the sum
standard-ternary-pullback f g h i :=
Σ (a : A) (b : B) (c : C), ((f a = g b) × (h b = i c)).
Definitions
module _ {l1 l2 l3 l4 l5 : Level} {X : UU l1} {Y : UU l2} {A : UU l3} {B : UU l4} {C : UU l5} (f : A → X) (g : B → X) (h : B → Y) (i : C → Y) where standard-ternary-pullback : UU (l1 ⊔ l2 ⊔ l3 ⊔ l4 ⊔ l5) standard-ternary-pullback = Σ A (λ a → Σ B (λ b → Σ C (λ c → (f a = g b) × (h b = i c))))
See also
Table of files about pullbacks
The following table lists files that are about pullbacks as a general concept.
Recent changes
- 2025-01-03. Fredrik Bakke. Composition operations on spans of spans (#1231).