Connective prespectra
Content created by Fredrik Bakke.
Created on 2024-10-18.
Last modified on 2024-10-18.
module synthetic-homotopy-theory.connective-prespectra where
Imports
open import elementary-number-theory.natural-numbers open import foundation.connected-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.truncation-levels open import foundation.universe-levels open import structured-types.pointed-equivalences open import structured-types.pointed-maps open import structured-types.pointed-types open import synthetic-homotopy-theory.loop-spaces open import synthetic-homotopy-theory.prespectra open import synthetic-homotopy-theory.suspensions-of-pointed-types open import synthetic-homotopy-theory.suspensions-of-types
Idea
A prespectrum is connective¶ if the th type in the sequence is -connected.
The predicate on prespectra of being connective
module _ {l : Level} (A : Prespectrum l) where is-connective-Prespectrum : UU l is-connective-Prespectrum = (n : ℕ) → is-connected (truncation-level-ℕ n) (type-Prespectrum A n) is-prop-is-connective-Prespectrum : is-prop is-connective-Prespectrum is-prop-is-connective-Prespectrum = is-prop-Π ( λ n → is-prop-is-connected (truncation-level-ℕ n) (type-Prespectrum A n)) is-connective-prop-Prespectrum : Prop l is-connective-prop-Prespectrum = is-connective-Prespectrum , is-prop-is-connective-Prespectrum
The type of connective prespectra
Connective-Prespectrum : (l : Level) → UU (lsuc l) Connective-Prespectrum l = Σ (Prespectrum l) (is-connective-Prespectrum) module _ {l : Level} (A : Connective-Prespectrum l) where prespectrum-Connective-Prespectrum : Prespectrum l prespectrum-Connective-Prespectrum = pr1 A pointed-type-Connective-Prespectrum : ℕ → Pointed-Type l pointed-type-Connective-Prespectrum = pointed-type-Prespectrum prespectrum-Connective-Prespectrum type-Connective-Prespectrum : ℕ → UU l type-Connective-Prespectrum = type-Prespectrum prespectrum-Connective-Prespectrum point-Connective-Prespectrum : (n : ℕ) → type-Connective-Prespectrum n point-Connective-Prespectrum = point-Prespectrum prespectrum-Connective-Prespectrum pointed-adjoint-structure-map-Connective-Prespectrum : (n : ℕ) → pointed-type-Connective-Prespectrum n →∗ Ω (pointed-type-Connective-Prespectrum (succ-ℕ n)) pointed-adjoint-structure-map-Connective-Prespectrum = pointed-adjoint-structure-map-Prespectrum prespectrum-Connective-Prespectrum adjoint-structure-map-Connective-Prespectrum : (n : ℕ) → type-Connective-Prespectrum n → type-Ω (pointed-type-Connective-Prespectrum (succ-ℕ n)) adjoint-structure-map-Connective-Prespectrum = adjoint-structure-map-Prespectrum prespectrum-Connective-Prespectrum preserves-point-adjoint-structure-map-Connective-Prespectrum : (n : ℕ) → adjoint-structure-map-Prespectrum (pr1 A) n (point-Prespectrum (pr1 A) n) = refl-Ω (pointed-type-Prespectrum (pr1 A) (succ-ℕ n)) preserves-point-adjoint-structure-map-Connective-Prespectrum = preserves-point-adjoint-structure-map-Prespectrum prespectrum-Connective-Prespectrum is-connective-Connective-Prespectrum : is-connective-Prespectrum prespectrum-Connective-Prespectrum is-connective-Connective-Prespectrum = pr2 A
The structure maps of a connective prespectrum
module _ {l : Level} (A : Connective-Prespectrum l) (n : ℕ) where pointed-structure-map-Connective-Prespectrum : suspension-Pointed-Type (pointed-type-Connective-Prespectrum A n) →∗ pointed-type-Connective-Prespectrum A (succ-ℕ n) pointed-structure-map-Connective-Prespectrum = pointed-structure-map-Prespectrum (prespectrum-Connective-Prespectrum A) n structure-map-Connective-Prespectrum : suspension (type-Connective-Prespectrum A n) → type-Connective-Prespectrum A (succ-ℕ n) structure-map-Connective-Prespectrum = map-pointed-map pointed-structure-map-Connective-Prespectrum preserves-point-structure-map-Connective-Prespectrum : structure-map-Connective-Prespectrum north-suspension = point-Connective-Prespectrum A (succ-ℕ n) preserves-point-structure-map-Connective-Prespectrum = preserves-point-pointed-map pointed-structure-map-Connective-Prespectrum
External links
- connective spectrum at Lab
Recent changes
- 2024-10-18. Fredrik Bakke. Abelian ∞-groups (#1178).