The category of metric spaces and isometries
Content created by Fredrik Bakke and malarbol.
Created on 2024-09-28.
Last modified on 2024-09-28.
module metric-spaces.category-of-metric-spaces-and-isometries where
Imports
open import category-theory.categories open import category-theory.isomorphisms-in-precategories open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.torsorial-type-families open import foundation.universe-levels open import metric-spaces.equality-of-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.precategory-of-metric-spaces-and-isometries
Idea
The precategory of metric spaces and isometries is a category. We call this the category of metric spaces and isometries¶.
Definitions
The precategory of metric spaces and isometries is a category
module _ {l1 l2 : Level} where is-torsorial-iso-isometry-Metric-Space : (A : Metric-Space l1 l2) → is-torsorial (iso-Precategory precategory-isometry-Metric-Space A) is-torsorial-iso-isometry-Metric-Space A = is-contr-equiv ( Σ (Metric-Space l1 l2) (isometric-equiv-Metric-Space' A)) ( equiv-tot (equiv-iso-isometric-equiv-Metric-Space' A)) ( is-torsorial-isometric-equiv-Metric-Space' A) is-category-precategory-isometry-Metric-Space : is-category-Precategory (precategory-isometry-Metric-Space {l1} {l2}) is-category-precategory-isometry-Metric-Space A = fundamental-theorem-id ( is-torsorial-iso-isometry-Metric-Space A) ( iso-eq-Precategory precategory-isometry-Metric-Space A)
The category of metric spaces and isometries
module _ {l1 l2 : Level} where category-isometry-Metric-Space : Category (lsuc l1 ⊔ lsuc l2) (l1 ⊔ l2) pr1 category-isometry-Metric-Space = precategory-isometry-Metric-Space {l1} {l2} pr2 category-isometry-Metric-Space = is-category-precategory-isometry-Metric-Space
Recent changes
- 2024-09-28. malarbol and Fredrik Bakke. Metric spaces (#1162).