Function commutative monoids
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-03-13.
Last modified on 2023-05-01.
module group-theory.function-commutative-monoids where
Imports
open import foundation.identity-types open import foundation.sets open import foundation.universe-levels open import group-theory.commutative-monoids open import group-theory.dependent-products-commutative-monoids open import group-theory.monoids
Idea
Given a commutative monoid M
and a type X
, the function commuative monoid
M^X
consists of functions from X
to the underlying type of M
. The
multiplicative operation and the unit are given pointwise.
Definition
module _ {l1 l2 : Level} (M : Commutative-Monoid l1) (X : UU l2) where function-Commutative-Monoid : Commutative-Monoid (l1 ⊔ l2) function-Commutative-Monoid = Π-Commutative-Monoid X (λ _ → M) monoid-function-Commutative-Monoid : Monoid (l1 ⊔ l2) monoid-function-Commutative-Monoid = monoid-Π-Commutative-Monoid X (λ _ → M) set-function-Commutative-Monoid : Set (l1 ⊔ l2) set-function-Commutative-Monoid = set-Π-Commutative-Monoid X (λ _ → M) type-function-Commutative-Monoid : UU (l1 ⊔ l2) type-function-Commutative-Monoid = type-Π-Commutative-Monoid X (λ _ → M) unit-function-Commutative-Monoid : type-function-Commutative-Monoid unit-function-Commutative-Monoid = unit-Π-Commutative-Monoid X (λ _ → M) mul-function-Commutative-Monoid : (f g : type-function-Commutative-Monoid) → type-function-Commutative-Monoid mul-function-Commutative-Monoid = mul-Π-Commutative-Monoid X (λ _ → M) associative-mul-function-Commutative-Monoid : (f g h : type-function-Commutative-Monoid) → mul-function-Commutative-Monoid (mul-function-Commutative-Monoid f g) h = mul-function-Commutative-Monoid f (mul-function-Commutative-Monoid g h) associative-mul-function-Commutative-Monoid = associative-mul-Π-Commutative-Monoid X (λ _ → M) left-unit-law-mul-function-Commutative-Monoid : (f : type-function-Commutative-Monoid) → mul-function-Commutative-Monoid unit-function-Commutative-Monoid f = f left-unit-law-mul-function-Commutative-Monoid = left-unit-law-mul-Π-Commutative-Monoid X (λ _ → M) right-unit-law-mul-function-Commutative-Monoid : (f : type-function-Commutative-Monoid) → mul-function-Commutative-Monoid f unit-function-Commutative-Monoid = f right-unit-law-mul-function-Commutative-Monoid = right-unit-law-mul-Π-Commutative-Monoid X (λ _ → M) commutative-mul-function-Commutative-Monoid : (f g : type-function-Commutative-Monoid) → mul-function-Commutative-Monoid f g = mul-function-Commutative-Monoid g f commutative-mul-function-Commutative-Monoid = commutative-mul-Π-Commutative-Monoid X (λ _ → M)
Recent changes
- 2023-05-01. Fredrik Bakke. Refactor 2, the sequel to refactor (#581).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-19. Fredrik Bakke. Make
unused_imports_remover
faster and safer (#512). - 2023-03-13. Egbert Rijke. Products of semigroups, monoids, commutative monoids, groups, abelian groups, semirings, rings, commutative semirings, and commutative rings (#505).