Morphisms of dependent sequential diagrams
Content created by Vojtěch Štěpančík.
Created on 2024-04-16.
Last modified on 2024-04-16.
module synthetic-homotopy-theory.morphisms-dependent-sequential-diagrams where
Imports
open import elementary-number-theory.natural-numbers open import foundation.commuting-squares-of-maps open import foundation.dependent-pair-types open import foundation.universe-levels open import synthetic-homotopy-theory.dependent-sequential-diagrams open import synthetic-homotopy-theory.sequential-diagrams
Idea
Consider two dependent sequential diagrams
b₀ b₁ b₂ c₀ c₁ c₂
B₀ ---> B₁ ---> B₂ ---> ⋯ C₀ ---> C₁ ---> C₂ ---> ⋯
| | | | | |
| | | | | |
↡ ↡ ↡ ↡ ↡ ↡
A₀ ---> A₁ ---> A₂ ---> ⋯ A₀ ---> A₁ ---> A₂ ---> ⋯ .
a₀ a₁ a₂ a₀ a₁ a₂
A morphism of dependent sequential diagrams¶ between them is a family of fiberwise maps
hₙ : (a : Aₙ) → Bₙ a → Cₙ a
equipped with a family of fiberwise homotopies making the squares
hₙ a
Bₙ a -----------------> Cₙ a
| |
bₙ a | | cₙ a
| |
∨ ∨
Bₙ₊₁ (aₙ a) ----------> Cₙ₊₁ (aₙ a)
hₙ₊₁ (aₙ a)
Definitions
Morphisms of dependent sequential diagrams
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} (B : dependent-sequential-diagram A l2) (C : dependent-sequential-diagram A l3) where coherence-hom-dependent-sequential-diagram : ( (n : ℕ) (a : family-sequential-diagram A n) → family-dependent-sequential-diagram B n a → family-dependent-sequential-diagram C n a) → UU (l1 ⊔ l2 ⊔ l3) coherence-hom-dependent-sequential-diagram h = (n : ℕ) (a : family-sequential-diagram A n) → coherence-square-maps ( h n a) ( map-dependent-sequential-diagram B n a) ( map-dependent-sequential-diagram C n a) ( h (succ-ℕ n) (map-sequential-diagram A n a)) hom-dependent-sequential-diagram : UU (l1 ⊔ l2 ⊔ l3) hom-dependent-sequential-diagram = Σ ( (n : ℕ) (a : family-sequential-diagram A n) → family-dependent-sequential-diagram B n a → family-dependent-sequential-diagram C n a) ( coherence-hom-dependent-sequential-diagram)
Components of a morphism of sequential diagrams
module _ {l1 l2 l3 : Level} {A : sequential-diagram l1} {B : dependent-sequential-diagram A l2} (C : dependent-sequential-diagram A l3) (h : hom-dependent-sequential-diagram B C) where map-hom-dependent-sequential-diagram : (n : ℕ) (a : family-sequential-diagram A n) → family-dependent-sequential-diagram B n a → family-dependent-sequential-diagram C n a map-hom-dependent-sequential-diagram = pr1 h coh-hom-dependent-sequential-diagram : coherence-hom-dependent-sequential-diagram B C ( map-hom-dependent-sequential-diagram) coh-hom-dependent-sequential-diagram = pr2 h
Recent changes
- 2024-04-16. Vojtěch Štěpančík. Descent data for sequential colimits and its version of the flattening lemma (#1109).