Invertible elements in commutative rings
Content created by Jonathan Prieto-Cubides, Fredrik Bakke, Egbert Rijke and Gregor Perčič.
Created on 2022-05-27.
Last modified on 2023-09-21.
module commutative-algebra.invertible-elements-commutative-rings where
Imports
open import commutative-algebra.commutative-rings open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.universe-levels open import ring-theory.invertible-elements-rings
Idea
An element of a commutative ring
A
is said to be invertible if it has a two-sided inverse. However, since
multiplication in commutative rings is commutative, any element is already
invertible as soon as it has either a left or a right inverse. The invertible
elements of a commutative ring A
are also called the (multiplicative)
units of A
.
The abelian group of multiplicative units is
constructed in
commutative-algebra.groups-of-units-commutative-rings
.
Definitions
Left invertible elements of commutative rings
module _ {l : Level} (A : Commutative-Ring l) where is-left-inverse-element-Commutative-Ring : (x y : type-Commutative-Ring A) → UU l is-left-inverse-element-Commutative-Ring = is-left-inverse-element-Ring (ring-Commutative-Ring A) is-left-invertible-element-Commutative-Ring : type-Commutative-Ring A → UU l is-left-invertible-element-Commutative-Ring = is-left-invertible-element-Ring (ring-Commutative-Ring A) module _ {l : Level} (A : Commutative-Ring l) {x : type-Commutative-Ring A} where retraction-is-left-invertible-element-Commutative-Ring : is-left-invertible-element-Commutative-Ring A x → type-Commutative-Ring A retraction-is-left-invertible-element-Commutative-Ring = retraction-is-left-invertible-element-Ring ( ring-Commutative-Ring A) is-left-inverse-retraction-is-left-invertible-element-Commutative-Ring : (H : is-left-invertible-element-Commutative-Ring A x) → is-left-inverse-element-Commutative-Ring A x ( retraction-is-left-invertible-element-Commutative-Ring H) is-left-inverse-retraction-is-left-invertible-element-Commutative-Ring = is-left-inverse-retraction-is-left-invertible-element-Ring ( ring-Commutative-Ring A)
Aight invertible elements of commutative rings
module _ {l : Level} (A : Commutative-Ring l) where is-right-inverse-element-Commutative-Ring : (x y : type-Commutative-Ring A) → UU l is-right-inverse-element-Commutative-Ring = is-right-inverse-element-Ring (ring-Commutative-Ring A) is-right-invertible-element-Commutative-Ring : type-Commutative-Ring A → UU l is-right-invertible-element-Commutative-Ring = is-right-invertible-element-Ring (ring-Commutative-Ring A) module _ {l : Level} (A : Commutative-Ring l) {x : type-Commutative-Ring A} where section-is-right-invertible-element-Commutative-Ring : is-right-invertible-element-Commutative-Ring A x → type-Commutative-Ring A section-is-right-invertible-element-Commutative-Ring = section-is-right-invertible-element-Ring (ring-Commutative-Ring A) is-right-inverse-section-is-right-invertible-element-Commutative-Ring : (H : is-right-invertible-element-Commutative-Ring A x) → is-right-inverse-element-Commutative-Ring A x ( section-is-right-invertible-element-Commutative-Ring H) is-right-inverse-section-is-right-invertible-element-Commutative-Ring = is-right-inverse-section-is-right-invertible-element-Ring ( ring-Commutative-Ring A)
Invertible elements of commutative rings
module _ {l : Level} (A : Commutative-Ring l) (x : type-Commutative-Ring A) where is-inverse-element-Commutative-Ring : type-Commutative-Ring A → UU l is-inverse-element-Commutative-Ring = is-inverse-element-Ring (ring-Commutative-Ring A) x is-invertible-element-Commutative-Ring : UU l is-invertible-element-Commutative-Ring = is-invertible-element-Ring (ring-Commutative-Ring A) x module _ {l : Level} (A : Commutative-Ring l) {x : type-Commutative-Ring A} where inv-is-invertible-element-Commutative-Ring : is-invertible-element-Commutative-Ring A x → type-Commutative-Ring A inv-is-invertible-element-Commutative-Ring = inv-is-invertible-element-Ring (ring-Commutative-Ring A) is-right-inverse-inv-is-invertible-element-Commutative-Ring : (H : is-invertible-element-Commutative-Ring A x) → is-right-inverse-element-Commutative-Ring A x ( inv-is-invertible-element-Commutative-Ring H) is-right-inverse-inv-is-invertible-element-Commutative-Ring = is-right-inverse-inv-is-invertible-element-Ring ( ring-Commutative-Ring A) is-left-inverse-inv-is-invertible-element-Commutative-Ring : (H : is-invertible-element-Commutative-Ring A x) → is-left-inverse-element-Commutative-Ring A x ( inv-is-invertible-element-Commutative-Ring H) is-left-inverse-inv-is-invertible-element-Commutative-Ring = is-left-inverse-inv-is-invertible-element-Ring ( ring-Commutative-Ring A) is-invertible-is-left-invertible-element-Commutative-Ring : is-left-invertible-element-Commutative-Ring A x → is-invertible-element-Commutative-Ring A x pr1 (is-invertible-is-left-invertible-element-Commutative-Ring H) = retraction-is-left-invertible-element-Commutative-Ring A H pr1 (pr2 (is-invertible-is-left-invertible-element-Commutative-Ring H)) = commutative-mul-Commutative-Ring A _ _ ∙ is-left-inverse-retraction-is-left-invertible-element-Commutative-Ring A H pr2 (pr2 (is-invertible-is-left-invertible-element-Commutative-Ring H)) = is-left-inverse-retraction-is-left-invertible-element-Commutative-Ring A H is-invertible-is-right-invertible-element-Commutative-Ring : is-right-invertible-element-Commutative-Ring A x → is-invertible-element-Commutative-Ring A x pr1 (is-invertible-is-right-invertible-element-Commutative-Ring H) = section-is-right-invertible-element-Commutative-Ring A H pr1 (pr2 (is-invertible-is-right-invertible-element-Commutative-Ring H)) = is-right-inverse-section-is-right-invertible-element-Commutative-Ring A H pr2 (pr2 (is-invertible-is-right-invertible-element-Commutative-Ring H)) = commutative-mul-Commutative-Ring A _ _ ∙ is-right-inverse-section-is-right-invertible-element-Commutative-Ring A H
Properties
Being an invertible element is a property
module _ {l : Level} (A : Commutative-Ring l) where is-prop-is-invertible-element-Commutative-Ring : (x : type-Commutative-Ring A) → is-prop (is-invertible-element-Commutative-Ring A x) is-prop-is-invertible-element-Commutative-Ring = is-prop-is-invertible-element-Ring (ring-Commutative-Ring A) is-invertible-element-prop-Commutative-Ring : type-Commutative-Ring A → Prop l is-invertible-element-prop-Commutative-Ring = is-invertible-element-prop-Ring (ring-Commutative-Ring A)
Inverses are left/right inverses
module _ {l : Level} (A : Commutative-Ring l) where is-left-invertible-is-invertible-element-Commutative-Ring : (x : type-Commutative-Ring A) → is-invertible-element-Commutative-Ring A x → is-left-invertible-element-Commutative-Ring A x is-left-invertible-is-invertible-element-Commutative-Ring = is-left-invertible-is-invertible-element-Ring (ring-Commutative-Ring A) is-right-invertible-is-invertible-element-Commutative-Ring : (x : type-Commutative-Ring A) → is-invertible-element-Commutative-Ring A x → is-right-invertible-element-Commutative-Ring A x is-right-invertible-is-invertible-element-Commutative-Ring = is-right-invertible-is-invertible-element-Ring (ring-Commutative-Ring A)
The inverse invertible element
module _ {l : Level} (A : Commutative-Ring l) where is-right-invertible-left-inverse-Commutative-Ring : (x : type-Commutative-Ring A) (H : is-left-invertible-element-Commutative-Ring A x) → is-right-invertible-element-Commutative-Ring A ( retraction-is-left-invertible-element-Commutative-Ring A H) is-right-invertible-left-inverse-Commutative-Ring = is-right-invertible-left-inverse-Ring (ring-Commutative-Ring A) is-left-invertible-right-inverse-Commutative-Ring : (x : type-Commutative-Ring A) (H : is-right-invertible-element-Commutative-Ring A x) → is-left-invertible-element-Commutative-Ring A ( section-is-right-invertible-element-Commutative-Ring A H) is-left-invertible-right-inverse-Commutative-Ring = is-left-invertible-right-inverse-Ring (ring-Commutative-Ring A) is-invertible-element-inverse-Commutative-Ring : (x : type-Commutative-Ring A) (H : is-invertible-element-Commutative-Ring A x) → is-invertible-element-Commutative-Ring A ( inv-is-invertible-element-Commutative-Ring A H) is-invertible-element-inverse-Commutative-Ring = is-invertible-element-inverse-Ring (ring-Commutative-Ring A)
Any invertible element of a monoid has a contractible type of right inverses
module _ {l : Level} (A : Commutative-Ring l) where is-contr-is-right-invertible-element-Commutative-Ring : (x : type-Commutative-Ring A) → is-invertible-element-Commutative-Ring A x → is-contr (is-right-invertible-element-Commutative-Ring A x) is-contr-is-right-invertible-element-Commutative-Ring = is-contr-is-right-invertible-element-Ring (ring-Commutative-Ring A)
Any invertible element of a monoid has a contractible type of left inverses
module _ {l : Level} (A : Commutative-Ring l) where is-contr-is-left-invertible-Commutative-Ring : (x : type-Commutative-Ring A) → is-invertible-element-Commutative-Ring A x → is-contr (is-left-invertible-element-Commutative-Ring A x) is-contr-is-left-invertible-Commutative-Ring = is-contr-is-left-invertible-Ring (ring-Commutative-Ring A)
The unit of a monoid is invertible
module _ {l : Level} (A : Commutative-Ring l) where is-left-invertible-element-one-Commutative-Ring : is-left-invertible-element-Commutative-Ring A (one-Commutative-Ring A) is-left-invertible-element-one-Commutative-Ring = is-left-invertible-element-one-Ring (ring-Commutative-Ring A) is-right-invertible-element-one-Commutative-Ring : is-right-invertible-element-Commutative-Ring A (one-Commutative-Ring A) is-right-invertible-element-one-Commutative-Ring = is-right-invertible-element-one-Ring (ring-Commutative-Ring A) is-invertible-element-one-Commutative-Ring : is-invertible-element-Commutative-Ring A (one-Commutative-Ring A) is-invertible-element-one-Commutative-Ring = is-invertible-element-one-Ring (ring-Commutative-Ring A)
Invertible elements are closed under multiplication
module _ {l : Level} (A : Commutative-Ring l) where is-left-invertible-element-mul-Commutative-Ring : (x y : type-Commutative-Ring A) → is-left-invertible-element-Commutative-Ring A x → is-left-invertible-element-Commutative-Ring A y → is-left-invertible-element-Commutative-Ring A (mul-Commutative-Ring A x y) is-left-invertible-element-mul-Commutative-Ring = is-left-invertible-element-mul-Ring (ring-Commutative-Ring A) is-right-invertible-element-mul-Commutative-Ring : (x y : type-Commutative-Ring A) → is-right-invertible-element-Commutative-Ring A x → is-right-invertible-element-Commutative-Ring A y → is-right-invertible-element-Commutative-Ring A (mul-Commutative-Ring A x y) is-right-invertible-element-mul-Commutative-Ring = is-right-invertible-element-mul-Ring (ring-Commutative-Ring A) is-invertible-element-mul-Commutative-Ring : (x y : type-Commutative-Ring A) → is-invertible-element-Commutative-Ring A x → is-invertible-element-Commutative-Ring A y → is-invertible-element-Commutative-Ring A (mul-Commutative-Ring A x y) is-invertible-element-mul-Commutative-Ring = is-invertible-element-mul-Ring (ring-Commutative-Ring A)
The inverse of an invertible element is invertible
module _ {l : Level} (A : Commutative-Ring l) where is-invertible-element-inv-is-invertible-element-Commutative-Ring : {x : type-Commutative-Ring A} (H : is-invertible-element-Commutative-Ring A x) → is-invertible-element-Commutative-Ring A ( inv-is-invertible-element-Commutative-Ring A H) is-invertible-element-inv-is-invertible-element-Commutative-Ring = is-invertible-element-inv-is-invertible-element-Ring ( ring-Commutative-Ring A)
See also
- The group of multiplicative units of a commutative ring is defined in
commutative-algebra.groups-of-units-commutative-rings
.
Recent changes
- 2023-09-21. Egbert Rijke and Gregor Perčič. The classification of cyclic rings (#757).
- 2023-05-04. Egbert Rijke. Cleaning up commutative algebra (#589).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).
- 2023-03-13. Jonathan Prieto-Cubides. More maintenance (#506).
- 2023-03-10. Fredrik Bakke. Additions to
fix-import
(#497).