Inequality on the lower Dedekind real numbers
Content created by Louis Wasserman.
Created on 2025-02-16.
Last modified on 2025-02-16.
module real-numbers.inequality-lower-dedekind-real-numbers where
Imports
open import elementary-number-theory.inequality-rational-numbers open import elementary-number-theory.rational-numbers open import elementary-number-theory.strict-inequality-rational-numbers open import foundation.coproduct-types open import foundation.dependent-pair-types open import foundation.empty-types open import foundation.existential-quantification open import foundation.logical-equivalences open import foundation.negation open import foundation.powersets open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-preorders open import real-numbers.lower-dedekind-real-numbers open import real-numbers.rational-lower-dedekind-real-numbers
Idea
The standard ordering¶ on the lower real numbers is defined as the cut of one being a subset of the cut of the other.
Definition
module _ {l1 l2 : Level} (x : lower-ℝ l1) (y : lower-ℝ l2) where leq-lower-ℝ-Prop : Prop (l1 ⊔ l2) leq-lower-ℝ-Prop = leq-prop-subtype (cut-lower-ℝ x) (cut-lower-ℝ y) leq-lower-ℝ : UU (l1 ⊔ l2) leq-lower-ℝ = type-Prop leq-lower-ℝ-Prop
Properties
Inequality on lower Dedekind reals is a large poset
lower-ℝ-Large-Preorder : Large-Preorder lsuc _⊔_ type-Large-Preorder lower-ℝ-Large-Preorder = lower-ℝ leq-prop-Large-Preorder lower-ℝ-Large-Preorder = leq-lower-ℝ-Prop refl-leq-Large-Preorder lower-ℝ-Large-Preorder x = refl-leq-subtype (cut-lower-ℝ x) transitive-leq-Large-Preorder lower-ℝ-Large-Preorder x y z = transitive-leq-subtype (cut-lower-ℝ x) (cut-lower-ℝ y) (cut-lower-ℝ z) lower-ℝ-Large-Poset : Large-Poset lsuc _⊔_ large-preorder-Large-Poset lower-ℝ-Large-Poset = lower-ℝ-Large-Preorder antisymmetric-leq-Large-Poset lower-ℝ-Large-Poset x y x≤y y≤x = eq-eq-cut-lower-ℝ ( x) ( y) ( antisymmetric-leq-subtype (cut-lower-ℝ x) (cut-lower-ℝ y) x≤y y≤x)
If a rational is in a lower Dedekind cut, its projections is less than or equal to the corresponding lower real
module _ {l : Level} (x : lower-ℝ l) (q : ℚ) where leq-is-in-cut-lower-real-ℚ : is-in-cut-lower-ℝ x q → leq-lower-ℝ (lower-real-ℚ q) x leq-is-in-cut-lower-real-ℚ q∈L p p<q = backward-implication ( is-rounded-cut-lower-ℝ x p) ( intro-exists q (p<q , q∈L))
The canonical map from the rational numbers to the lower reals preserves inequality
preserves-leq-lower-real-ℚ : (p q : ℚ) → leq-ℚ p q → leq-lower-ℝ (lower-real-ℚ p) (lower-real-ℚ q) preserves-leq-lower-real-ℚ p q p≤q r r<p = concatenate-le-leq-ℚ r p q r<p p≤q reflects-leq-lower-real-ℚ : (p q : ℚ) → leq-lower-ℝ (lower-real-ℚ p) (lower-real-ℚ q) → leq-ℚ p q reflects-leq-lower-real-ℚ p q r<p→r<q with decide-le-leq-ℚ q p ... | inr p≤q = p≤q ... | inl q<p = ex-falso (irreflexive-le-ℚ q (r<p→r<q q q<p)) iff-leq-lower-real-ℚ : (p q : ℚ) → leq-ℚ p q ↔ leq-lower-ℝ (lower-real-ℚ p) (lower-real-ℚ q) pr1 (iff-leq-lower-real-ℚ p q) = preserves-leq-lower-real-ℚ p q pr2 (iff-leq-lower-real-ℚ p q) = reflects-leq-lower-real-ℚ p q
Recent changes
- 2025-02-16. Louis Wasserman. Break the Dedekind reals into lower and upper Dedekind reals (#1314).