Dependent products of ring extensions of the rational numbers
Content created by Garrett Figueroa and malarbol.
Created on 2025-08-11.
Last modified on 2025-08-11.
{-# OPTIONS --lossy-unification #-} module ring-theory.dependent-products-ring-extensions-rational-numbers where
Imports
open import elementary-number-theory.integers open import elementary-number-theory.positive-integers open import elementary-number-theory.rational-numbers open import elementary-number-theory.ring-of-integers open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.function-types open import foundation.identity-types open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-abelian-groups open import ring-theory.dependent-products-rings open import ring-theory.homomorphisms-rings open import ring-theory.ring-extensions-rational-numbers open import ring-theory.rings
Idea
A dependent product of ring extensions of ℚ is a ring extension of ℚ. This is the product ring extension of ℚ¶ of a family of ring extensions of ℚ.
Definitions
The product of ring extensions of ℚ
is a ring extension of ℚ
module _ {l1 l2 : Level} (I : UU l1) (R : I → Rational-Extension-Ring l2) where is-rational-extension-ring-Π-Rational-Extension-Ring : is-rational-extension-Ring (Π-Ring I (ring-Rational-Extension-Ring ∘ R)) is-rational-extension-ring-Π-Rational-Extension-Ring k k>0 = ( λ i → inv-positive-integer-Rational-Extension-Ring (R i) (k , k>0)) , ( eq-htpy ( λ i → inv-tr ( λ h → mul-Rational-Extension-Ring ( R i) ( map-hom-Ring ( ℤ-Ring) ( Π-Ring I (ring-Rational-Extension-Ring ∘ R)) ( h) ( k) ( i)) ( inv-positive-integer-Rational-Extension-Ring (R i) (k , k>0)) = one-Ring (ring-Rational-Extension-Ring (R i))) ( eq-initial-hom-Π-Ring I (ring-Rational-Extension-Ring ∘ R)) ( right-inverse-law-positive-integer-Rational-Extension-Ring ( R i) ( k , k>0)))) , ( eq-htpy ( λ i → inv-tr ( λ h → mul-Rational-Extension-Ring ( R i) ( inv-positive-integer-Rational-Extension-Ring (R i) (k , k>0)) ( map-hom-Ring ( ℤ-Ring) ( Π-Ring I (ring-Rational-Extension-Ring ∘ R)) ( h) ( k) ( i)) = one-Ring (ring-Rational-Extension-Ring (R i))) ( eq-initial-hom-Π-Ring I (ring-Rational-Extension-Ring ∘ R)) ( left-inverse-law-positive-integer-Rational-Extension-Ring ( R i) ( k , k>0)))) Π-Rational-Extension-Ring : Rational-Extension-Ring (l1 ⊔ l2) Π-Rational-Extension-Ring = ( Π-Ring I (ring-Rational-Extension-Ring ∘ R)) , ( is-rational-extension-ring-Π-Rational-Extension-Ring)
Recent changes
- 2025-08-11. malarbol and Garrett Figueroa. Ring extensions of
ℚ
and rational modules (#1452).