Equivalences
Content created by Egbert Rijke, Fredrik Bakke, Jonathan Prieto-Cubides, Vojtěch Štěpančík, Elisabeth Stenholm, Eléonore Mangel, Raymond Baker and maybemabeline.
Created on 2022-01-26.
Last modified on 2024-11-05.
module foundation.equivalences where open import foundation-core.equivalences public
Imports
open import foundation.action-on-identifications-functions open import foundation.cones-over-cospan-diagrams open import foundation.dependent-pair-types open import foundation.equivalence-extensionality open import foundation.function-extensionality open import foundation.functoriality-fibers-of-maps open import foundation.logical-equivalences open import foundation.transport-along-identifications open import foundation.transposition-identifications-along-equivalences open import foundation.truncated-maps open import foundation.universal-property-equivalences open import foundation.universe-levels open import foundation-core.commuting-triangles-of-maps open import foundation-core.contractible-maps open import foundation-core.contractible-types open import foundation-core.embeddings open import foundation-core.fibers-of-maps open import foundation-core.function-types open import foundation-core.functoriality-dependent-pair-types open import foundation-core.homotopies open import foundation-core.identity-types open import foundation-core.injective-maps open import foundation-core.propositions open import foundation-core.pullbacks open import foundation-core.retractions open import foundation-core.retracts-of-types open import foundation-core.sections open import foundation-core.subtypes open import foundation-core.truncation-levels open import foundation-core.type-theoretic-principle-of-choice
Properties
Any equivalence is an embedding
We already proved in foundation-core.equivalences
that equivalences are
embeddings. Here we have _↪_
available, so we record the map from equivalences
to embeddings.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-emb-equiv : (e : A ≃ B) → is-emb (map-equiv e) is-emb-equiv e = is-emb-is-equiv (is-equiv-map-equiv e) emb-equiv : (A ≃ B) → (A ↪ B) pr1 (emb-equiv e) = map-equiv e pr2 (emb-equiv e) = is-emb-equiv e
Equivalences have a contractible type of sections
Proof: Since equivalences are contractible maps, and products of contractible types are contractible, it follows that the type
(b : B) → fiber f b
is contractible, for any equivalence f
. However, by the
type theoretic principle of choice
it follows that this type is equivalent to the type
Σ (B → A) (λ g → (b : B) → f (g b) = b),
which is the type of sections of f
.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-contr-section-is-equiv : {f : A → B} → is-equiv f → is-contr (section f) is-contr-section-is-equiv {f} is-equiv-f = is-contr-equiv' ( (b : B) → fiber f b) ( distributive-Π-Σ) ( is-contr-Π (is-contr-map-is-equiv is-equiv-f))
Equivalences have a contractible type of retractions
Proof: Since precomposing by an equivalence is an equivalence, and equivalences are contractible maps, it follows that the fiber of the map
(B → A) → (A → A)
at id : A → A
is contractible, i.e., the type Σ (B → A) (λ h → h ∘ f = id)
is contractible. Furthermore, since fiberwise equivalences induce equivalences
on total spaces, it follows from
function extensionality` that the type
Σ (B → A) (λ h → h ∘ f ~ id)
is contractible. In other words, the type of retractions of an equivalence is contractible.
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where abstract is-contr-retraction-is-equiv : {f : A → B} → is-equiv f → is-contr (retraction f) is-contr-retraction-is-equiv {f} is-equiv-f = is-contr-equiv' ( Σ (B → A) (λ h → h ∘ f = id)) ( equiv-tot (λ h → equiv-funext)) ( is-contr-map-is-equiv (is-equiv-precomp-is-equiv f is-equiv-f A) id)
The underlying retract of an equivalence
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where retract-equiv : A ≃ B → A retract-of B retract-equiv e = ( map-equiv e , map-inv-equiv e , is-retraction-map-inv-equiv e) retract-inv-equiv : B ≃ A → A retract-of B retract-inv-equiv e = ( map-inv-equiv e , map-equiv e , is-section-map-inv-equiv e)
Being an equivalence is a property
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} where is-contr-is-equiv-is-equiv : {f : A → B} → is-equiv f → is-contr (is-equiv f) is-contr-is-equiv-is-equiv is-equiv-f = is-contr-product ( is-contr-section-is-equiv is-equiv-f) ( is-contr-retraction-is-equiv is-equiv-f) abstract is-property-is-equiv : (f : A → B) → (H K : is-equiv f) → is-contr (H = K) is-property-is-equiv f H = is-prop-is-contr (is-contr-is-equiv-is-equiv H) H is-equiv-Prop : (f : A → B) → Prop (l1 ⊔ l2) pr1 (is-equiv-Prop f) = is-equiv f pr2 (is-equiv-Prop f) = is-property-is-equiv f eq-equiv-eq-map-equiv : {e e' : A ≃ B} → (map-equiv e) = (map-equiv e') → e = e' eq-equiv-eq-map-equiv = eq-type-subtype is-equiv-Prop abstract is-emb-map-equiv : is-emb (map-equiv {A = A} {B = B}) is-emb-map-equiv = is-emb-inclusion-subtype is-equiv-Prop is-injective-map-equiv : is-injective (map-equiv {A = A} {B = B}) is-injective-map-equiv = is-injective-is-emb is-emb-map-equiv emb-map-equiv : (A ≃ B) ↪ (A → B) pr1 emb-map-equiv = map-equiv pr2 emb-map-equiv = is-emb-map-equiv
The 3-for-2 property of being an equivalence
If the right factor is an equivalence, then the left factor being an equivalence is equivalent to the composite being one
module _ { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} where equiv-is-equiv-right-map-triangle : { f : A → B} (e : B ≃ C) (h : A → C) ( H : coherence-triangle-maps h (map-equiv e) f) → is-equiv f ≃ is-equiv h equiv-is-equiv-right-map-triangle {f} e h H = equiv-iff-is-prop ( is-property-is-equiv f) ( is-property-is-equiv h) ( λ is-equiv-f → is-equiv-left-map-triangle h (map-equiv e) f H is-equiv-f ( is-equiv-map-equiv e)) ( is-equiv-top-map-triangle h (map-equiv e) f H (is-equiv-map-equiv e)) equiv-is-equiv-left-factor : { f : A → B} (e : B ≃ C) → is-equiv f ≃ is-equiv (map-equiv e ∘ f) equiv-is-equiv-left-factor {f} e = equiv-is-equiv-right-map-triangle e (map-equiv e ∘ f) refl-htpy
If the left factor is an equivalence, then the right factor being an equivalence is equivalent to the composite being one
module _ { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} where equiv-is-equiv-top-map-triangle : ( e : A ≃ B) {f : B → C} (h : A → C) ( H : coherence-triangle-maps h f (map-equiv e)) → is-equiv f ≃ is-equiv h equiv-is-equiv-top-map-triangle e {f} h H = equiv-iff-is-prop ( is-property-is-equiv f) ( is-property-is-equiv h) ( is-equiv-left-map-triangle h f (map-equiv e) H (is-equiv-map-equiv e)) ( λ is-equiv-h → is-equiv-right-map-triangle h f ( map-equiv e) ( H) ( is-equiv-h) ( is-equiv-map-equiv e)) equiv-is-equiv-right-factor : ( e : A ≃ B) {f : B → C} → is-equiv f ≃ is-equiv (f ∘ map-equiv e) equiv-is-equiv-right-factor e {f} = equiv-is-equiv-top-map-triangle e (f ∘ map-equiv e) refl-htpy
The 6-for-2 property of equivalences
Consider a commuting diagram of maps
i
A ------> X
| ∧ |
f | / | g
| h |
∨ / ∨
B ------> Y.
j
The 6-for-2 property of equivalences asserts that if i
and j
are
equivalences, then so are h
, f
, g
, and the triple composite g ∘ h ∘ f
.
The 6-for-2 property is also commonly known as the 2-out-of-6 property.
First proof: Since i
is an equivalence, it follows that i
is surjective.
This implies that h
is surjective. Furthermore, since j
is an equivalence it
follows that j
is an embedding. This implies that h
is an embedding. The map
h
is therefore both surjective and an embedding, so it must be an equivalence.
The fact that f
and g
are equivalences now follows from a simple application
of the 3-for-2 property of equivalences.
Unfortunately, the above proof requires us to import surjective-maps
, which
causes a cyclic module dependency. We therefore give a second proof, which
avoids the fact that maps that are both surjective and an embedding are
equivalences.
Second proof: By reasoning similar to that in the first proof, it suffices
to show that the diagonal filler h
is an equivalence. The map f ∘ i⁻¹
is a
section of h
, since we have (h ∘ f ~ i) → (h ∘ f ∘ i⁻¹ ~ id)
by transposing
along equivalences. Similarly, the map j⁻¹ ∘ g
is a retraction of h
, since
we have (g ∘ h ~ j) → (j⁻¹ ∘ g ∘ h ~ id)
by transposing along equivalences.
Since h
therefore has a section and a retraction, it is an equivalence.
In fact, the above argument shows that if the top map i
has a section and the
bottom map j
has a retraction, then the diagonal filler, and hence all other
maps are equivalences.
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) {i : A → X} {j : B → Y} (h : B → X) (u : coherence-triangle-maps i h f) (v : coherence-triangle-maps j g h) where section-diagonal-filler-section-top-square : section i → section h section-diagonal-filler-section-top-square = section-right-map-triangle i h f u section-diagonal-filler-is-equiv-top-is-equiv-bottom-square : is-equiv i → section h section-diagonal-filler-is-equiv-top-is-equiv-bottom-square H = section-diagonal-filler-section-top-square (section-is-equiv H) map-section-diagonal-filler-is-equiv-top-is-equiv-bottom-square : is-equiv i → X → B map-section-diagonal-filler-is-equiv-top-is-equiv-bottom-square H = map-section h ( section-diagonal-filler-is-equiv-top-is-equiv-bottom-square H) is-section-section-diagonal-filler-is-equiv-top-is-equiv-bottom-square : (H : is-equiv i) → is-section h ( map-section-diagonal-filler-is-equiv-top-is-equiv-bottom-square H) is-section-section-diagonal-filler-is-equiv-top-is-equiv-bottom-square H = is-section-map-section h ( section-diagonal-filler-is-equiv-top-is-equiv-bottom-square H) retraction-diagonal-filler-retraction-bottom-square : retraction j → retraction h retraction-diagonal-filler-retraction-bottom-square = retraction-top-map-triangle j g h v retraction-diagonal-filler-is-equiv-top-is-equiv-bottom-square : is-equiv j → retraction h retraction-diagonal-filler-is-equiv-top-is-equiv-bottom-square K = retraction-diagonal-filler-retraction-bottom-square (retraction-is-equiv K) map-retraction-diagonal-filler-is-equiv-top-is-equiv-bottom-square : is-equiv j → X → B map-retraction-diagonal-filler-is-equiv-top-is-equiv-bottom-square K = map-retraction h ( retraction-diagonal-filler-is-equiv-top-is-equiv-bottom-square K) is-retraction-retraction-diagonal-fller-is-equiv-top-is-equiv-bottom-square : (K : is-equiv j) → is-retraction h ( map-retraction-diagonal-filler-is-equiv-top-is-equiv-bottom-square K) is-retraction-retraction-diagonal-fller-is-equiv-top-is-equiv-bottom-square K = is-retraction-map-retraction h ( retraction-diagonal-filler-is-equiv-top-is-equiv-bottom-square K) is-equiv-diagonal-filler-section-top-retraction-bottom-square : section i → retraction j → is-equiv h pr1 (is-equiv-diagonal-filler-section-top-retraction-bottom-square H K) = section-diagonal-filler-section-top-square H pr2 (is-equiv-diagonal-filler-section-top-retraction-bottom-square H K) = retraction-diagonal-filler-retraction-bottom-square K is-equiv-diagonal-filler-is-equiv-top-is-equiv-bottom-square : is-equiv i → is-equiv j → is-equiv h is-equiv-diagonal-filler-is-equiv-top-is-equiv-bottom-square H K = is-equiv-diagonal-filler-section-top-retraction-bottom-square ( section-is-equiv H) ( retraction-is-equiv K) is-equiv-left-is-equiv-top-is-equiv-bottom-square : is-equiv i → is-equiv j → is-equiv f is-equiv-left-is-equiv-top-is-equiv-bottom-square H K = is-equiv-top-map-triangle i h f u ( is-equiv-diagonal-filler-is-equiv-top-is-equiv-bottom-square H K) ( H) is-equiv-right-is-equiv-top-is-equiv-bottom-square : is-equiv i → is-equiv j → is-equiv g is-equiv-right-is-equiv-top-is-equiv-bottom-square H K = is-equiv-right-map-triangle j g h v K ( is-equiv-diagonal-filler-is-equiv-top-is-equiv-bottom-square H K) is-equiv-triple-comp : is-equiv i → is-equiv j → is-equiv (g ∘ h ∘ f) is-equiv-triple-comp H K = is-equiv-comp g ( h ∘ f) ( is-equiv-comp h f ( is-equiv-left-is-equiv-top-is-equiv-bottom-square H K) ( is-equiv-diagonal-filler-is-equiv-top-is-equiv-bottom-square H K)) ( is-equiv-right-is-equiv-top-is-equiv-bottom-square H K)
Being an equivalence is closed under homotopies
module _ { l1 l2 : Level} {A : UU l1} {B : UU l2} where equiv-is-equiv-htpy : { f g : A → B} → (f ~ g) → is-equiv f ≃ is-equiv g equiv-is-equiv-htpy {f} {g} H = equiv-iff-is-prop ( is-property-is-equiv f) ( is-property-is-equiv g) ( is-equiv-htpy f (inv-htpy H)) ( is-equiv-htpy g H)
The groupoid laws for equivalences
Composition of equivalences is associative
associative-comp-equiv : {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {D : UU l4} → (e : A ≃ B) (f : B ≃ C) (g : C ≃ D) → ((g ∘e f) ∘e e) = (g ∘e (f ∘e e)) associative-comp-equiv e f g = eq-equiv-eq-map-equiv refl
Unit laws for composition of equivalences
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} where left-unit-law-equiv : (e : X ≃ Y) → (id-equiv ∘e e) = e left-unit-law-equiv e = eq-equiv-eq-map-equiv refl right-unit-law-equiv : (e : X ≃ Y) → (e ∘e id-equiv) = e right-unit-law-equiv e = eq-equiv-eq-map-equiv refl
A coherence law for the unit laws for composition of equivalences
coh-unit-laws-equiv : {l : Level} {X : UU l} → left-unit-law-equiv (id-equiv {A = X}) = right-unit-law-equiv (id-equiv {A = X}) coh-unit-laws-equiv = ap eq-equiv-eq-map-equiv refl
Inverse laws for composition of equivalences
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} where left-inverse-law-equiv : (e : X ≃ Y) → ((inv-equiv e) ∘e e) = id-equiv left-inverse-law-equiv e = eq-htpy-equiv (is-retraction-map-inv-is-equiv (is-equiv-map-equiv e)) right-inverse-law-equiv : (e : X ≃ Y) → (e ∘e (inv-equiv e)) = id-equiv right-inverse-law-equiv e = eq-htpy-equiv (is-section-map-inv-is-equiv (is-equiv-map-equiv e))
inv-equiv
is a fibered involution on equivalences
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} where inv-inv-equiv : (e : X ≃ Y) → (inv-equiv (inv-equiv e)) = e inv-inv-equiv e = eq-equiv-eq-map-equiv refl inv-inv-equiv' : (e : Y ≃ X) → (inv-equiv (inv-equiv e)) = e inv-inv-equiv' e = eq-equiv-eq-map-equiv refl is-equiv-inv-equiv : is-equiv (inv-equiv {A = X} {B = Y}) is-equiv-inv-equiv = is-equiv-is-invertible ( inv-equiv) ( inv-inv-equiv') ( inv-inv-equiv) equiv-inv-equiv : (X ≃ Y) ≃ (Y ≃ X) pr1 equiv-inv-equiv = inv-equiv pr2 equiv-inv-equiv = is-equiv-inv-equiv
Taking the inverse equivalence distributes over composition
module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} {Z : UU l3} where distributive-inv-comp-equiv : (e : X ≃ Y) (f : Y ≃ Z) → (inv-equiv (f ∘e e)) = ((inv-equiv e) ∘e (inv-equiv f)) distributive-inv-comp-equiv e f = eq-htpy-equiv ( λ x → map-eq-transpose-equiv-inv ( f ∘e e) ( ( ap (λ g → map-equiv g x) (inv (right-inverse-law-equiv f))) ∙ ( ap ( λ g → map-equiv (f ∘e (g ∘e (inv-equiv f))) x) ( inv (right-inverse-law-equiv e))))) distributive-map-inv-comp-equiv : (e : X ≃ Y) (f : Y ≃ Z) → map-inv-equiv (f ∘e e) = map-inv-equiv e ∘ map-inv-equiv f distributive-map-inv-comp-equiv e f = ap map-equiv (distributive-inv-comp-equiv e f)
Postcomposition of equivalences by an equivalence is an equivalence
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} where is-retraction-postcomp-equiv-inv-equiv : (f : B ≃ C) (e : A ≃ B) → inv-equiv f ∘e (f ∘e e) = e is-retraction-postcomp-equiv-inv-equiv f e = eq-htpy-equiv (λ x → is-retraction-map-inv-equiv f (map-equiv e x)) is-section-postcomp-equiv-inv-equiv : (f : B ≃ C) (e : A ≃ C) → f ∘e (inv-equiv f ∘e e) = e is-section-postcomp-equiv-inv-equiv f e = eq-htpy-equiv (λ x → is-section-map-inv-equiv f (map-equiv e x)) is-equiv-postcomp-equiv-equiv : (f : B ≃ C) → is-equiv (λ (e : A ≃ B) → f ∘e e) is-equiv-postcomp-equiv-equiv f = is-equiv-is-invertible ( inv-equiv f ∘e_) ( is-section-postcomp-equiv-inv-equiv f) ( is-retraction-postcomp-equiv-inv-equiv f) equiv-postcomp-equiv : {l1 l2 l3 : Level} {B : UU l2} {C : UU l3} → (f : B ≃ C) → (A : UU l1) → (A ≃ B) ≃ (A ≃ C) pr1 (equiv-postcomp-equiv f A) = f ∘e_ pr2 (equiv-postcomp-equiv f A) = is-equiv-postcomp-equiv-equiv f
Precomposition of equivalences by an equivalence is an equivalence
module _ {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} where is-retraction-precomp-equiv-inv-equiv : (e : A ≃ B) (f : B ≃ C) → (f ∘e e) ∘e inv-equiv e = f is-retraction-precomp-equiv-inv-equiv e f = eq-htpy-equiv (λ x → ap (map-equiv f) (is-section-map-inv-equiv e x)) is-section-precomp-equiv-inv-equiv : (e : A ≃ B) (f : A ≃ C) → (f ∘e inv-equiv e) ∘e e = f is-section-precomp-equiv-inv-equiv e f = eq-htpy-equiv (λ x → ap (map-equiv f) (is-retraction-map-inv-equiv e x)) is-equiv-precomp-equiv-equiv : (e : A ≃ B) → is-equiv (λ (f : B ≃ C) → f ∘e e) is-equiv-precomp-equiv-equiv e = is-equiv-is-invertible ( _∘e inv-equiv e) ( is-section-precomp-equiv-inv-equiv e) ( is-retraction-precomp-equiv-inv-equiv e) equiv-precomp-equiv : {l1 l2 l3 : Level} {A : UU l1} {B : UU l2} → (A ≃ B) → (C : UU l3) → (B ≃ C) ≃ (A ≃ C) pr1 (equiv-precomp-equiv e C) = _∘e e pr2 (equiv-precomp-equiv e C) = is-equiv-precomp-equiv-equiv e
Computing transport in the type of equivalences
module _ {l1 l2 l3 : Level} {A : UU l1} (B : A → UU l2) (C : A → UU l3) where tr-equiv-type : {x y : A} (p : x = y) (e : B x ≃ C x) → tr (λ x → B x ≃ C x) p e = equiv-tr C p ∘e e ∘e equiv-tr B (inv p) tr-equiv-type refl e = eq-htpy-equiv refl-htpy
A cospan in which one of the legs is an equivalence is a pullback if and only if the corresponding map on the cone is an equivalence
module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) where abstract is-equiv-vertical-map-is-pullback : is-equiv g → is-pullback f g c → is-equiv (vertical-map-cone f g c) is-equiv-vertical-map-is-pullback is-equiv-g pb = is-equiv-is-contr-map ( is-trunc-vertical-map-is-pullback neg-two-𝕋 f g c pb ( is-contr-map-is-equiv is-equiv-g)) abstract is-pullback-is-equiv-vertical-maps : is-equiv g → is-equiv (vertical-map-cone f g c) → is-pullback f g c is-pullback-is-equiv-vertical-maps is-equiv-g is-equiv-p = is-pullback-is-fiberwise-equiv-map-fiber-vertical-map-cone f g c ( λ a → is-equiv-is-contr ( map-fiber-vertical-map-cone f g c a) ( is-contr-map-is-equiv is-equiv-p a) ( is-contr-map-is-equiv is-equiv-g (f a))) module _ {l1 l2 l3 l4 : Level} {A : UU l1} {B : UU l2} {C : UU l3} {X : UU l4} (f : A → X) (g : B → X) (c : cone f g C) where abstract is-equiv-horizontal-map-is-pullback : is-equiv f → is-pullback f g c → is-equiv (horizontal-map-cone f g c) is-equiv-horizontal-map-is-pullback is-equiv-f pb = is-equiv-is-contr-map ( is-trunc-horizontal-map-is-pullback neg-two-𝕋 f g c pb ( is-contr-map-is-equiv is-equiv-f)) abstract is-pullback-is-equiv-horizontal-maps : is-equiv f → is-equiv (horizontal-map-cone f g c) → is-pullback f g c is-pullback-is-equiv-horizontal-maps is-equiv-f is-equiv-q = is-pullback-swap-cone' f g c ( is-pullback-is-equiv-vertical-maps g f ( swap-cone f g c) ( is-equiv-f) ( is-equiv-q))
See also
- For the notion of coherently invertible maps, also known as half-adjoint
equivalences, see
foundation.coherently-invertible-maps
. - For the notion of maps with contractible fibers see
foundation.contractible-maps
. - For the notion of path-split maps see
foundation.path-split-maps
. - For the notion of finitely coherent equivalence, see
[
foundation.finitely-coherent-equivalence
)(foundation.finitely-coherent-equivalence.md). - For the notion of finitely coherently invertible map, see
[
foundation.finitely-coherently-invertible-map
)(foundation.finitely-coherently-invertible-map.md). - For the notion of infinitely coherent equivalence, see
foundation.infinitely-coherent-equivalences
.
Table of files about function types, composition, and equivalences
External links
- The 2-out-of-6 property at $n$Lab
Recent changes
- 2024-11-05. Fredrik Bakke. Some results about path-cosplit maps (#1167).
- 2024-06-05. Vojtěch Štěpančík. Characterization of various families over pushouts (#1148).
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2024-03-20. Fredrik Bakke. Janitorial work on equivalences and embeddings (#1085).