The universal property of localizations at global subuniverses

Content created by Fredrik Bakke.

Created on 2025-02-03.
Last modified on 2025-02-03.

module orthogonal-factorization-systems.universal-property-localizations-at-global-subuniverses where
Imports
open import foundation.action-on-identifications-functions
open import foundation.cartesian-product-types
open import foundation.contractible-types
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.extensions-types
open import foundation.extensions-types-global-subuniverses
open import foundation.function-extensionality
open import foundation.function-types
open import foundation.global-subuniverses
open import foundation.homotopies
open import foundation.identity-types
open import foundation.precomposition-functions
open import foundation.propositions
open import foundation.retractions
open import foundation.sections
open import foundation.subuniverses
open import foundation.unit-type
open import foundation.univalence
open import foundation.universe-levels

open import orthogonal-factorization-systems.extensions-maps
open import orthogonal-factorization-systems.types-local-at-maps

Idea

Let 𝒫 be a global subuniverse. Given a type X we say a type LX in 𝒫 equipped with a unit map η : X → LX satisfies the universal property of localizations if every type Z in 𝒫 is η-local. I.e., the precomposition map

  - ∘ η : (LX → Z) → (X → Z)

is an equivalence.

Definitions

The universal property of being a localization at a global subuniverse

module _
  {α : Level  Level} {l1 l2 : Level} (𝒫 : global-subuniverse α)
  (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X)
  where

  universal-property-localization-global-subuniverse-Level :
    (l : Level)  UU (α l  l1  l2  lsuc l)
  universal-property-localization-global-subuniverse-Level l =
    (Z : type-global-subuniverse 𝒫 l) 
    is-local
      ( inclusion-extension-type-global-subuniverse 𝒫 LX)
      ( inclusion-global-subuniverse 𝒫 Z)

  universal-property-localization-global-subuniverse : UUω
  universal-property-localization-global-subuniverse =
    {l : Level}  universal-property-localization-global-subuniverse-Level l

The recursion principle of localization at a global subuniverse

module _
  {α : Level  Level} {l1 l2 : Level} (𝒫 : global-subuniverse α)
  (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X)
  where

  recursion-principle-localization-global-subuniverse-Level :
    (l : Level)  UU (α l  l1  l2  lsuc l)
  recursion-principle-localization-global-subuniverse-Level l =
    (Z : type-global-subuniverse 𝒫 l) 
    section
      ( precomp
        ( inclusion-extension-type-global-subuniverse 𝒫 LX)
        ( inclusion-global-subuniverse 𝒫 Z))

  recursion-principle-localization-global-subuniverse : UUω
  recursion-principle-localization-global-subuniverse =
    {l : Level}  recursion-principle-localization-global-subuniverse-Level l

Properties

Equivalences satisfy the universal property of localizations

module _
  {α : Level  Level} {l1 l2 : Level} (𝒫 : global-subuniverse α)
  (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X)
  where

  universal-property-localization-global-subuniverse-is-equiv :
    is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) 
    universal-property-localization-global-subuniverse 𝒫 X LX
  universal-property-localization-global-subuniverse-is-equiv H Z =
    is-local-is-equiv
      ( inclusion-extension-type-global-subuniverse 𝒫 LX)
      ( H)
      ( inclusion-global-subuniverse 𝒫 Z)

module _
  {α : Level  Level} {l1 : Level} (𝒫 : global-subuniverse α)
  (X : type-global-subuniverse 𝒫 l1)
  where

  universal-property-localization-global-subuniverse-id :
    universal-property-localization-global-subuniverse 𝒫
      ( inclusion-global-subuniverse 𝒫 X)
      ( X , id)
  universal-property-localization-global-subuniverse-id =
    universal-property-localization-global-subuniverse-is-equiv 𝒫
      ( inclusion-global-subuniverse 𝒫 X)
      ( X , id)
      ( is-equiv-id)

Satisfying the universal property of localizations is a property

module _
  {α : Level  Level} {l1 l2 : Level} (𝒫 : global-subuniverse α)
  (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X)
  where

  is-prop-universal-property-localization-global-subuniverse-Level :
    {l : Level} 
    is-prop (universal-property-localization-global-subuniverse-Level 𝒫 X LX l)
  is-prop-universal-property-localization-global-subuniverse-Level =
    is-prop-Π
      ( λ Z 
        is-property-is-local
          ( inclusion-extension-type-global-subuniverse 𝒫 LX)
          ( inclusion-global-subuniverse 𝒫 Z))

Localizations are closed under equivalences

module _
  {α : Level  Level} {l1 l2 : Level} (𝒫 : global-subuniverse α)
  (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X)
  (H : universal-property-localization-global-subuniverse 𝒫 X LX)
  where

  equiv-universal-property-localization-global-subuniverse :
    {l3 : Level} {Y : UU l3}
    (e : type-extension-type-global-subuniverse 𝒫 LX  Y) 
    universal-property-localization-global-subuniverse 𝒫 X
      ( ( Y ,
          is-closed-under-equiv-global-subuniverse 𝒫
            ( type-extension-type-global-subuniverse 𝒫 LX)
            ( Y)
            ( e)
            ( is-in-global-subuniverse-type-extension-type-global-subuniverse
              ( 𝒫)
              ( LX))) ,
        ( map-equiv e  inclusion-extension-type-global-subuniverse 𝒫 LX))
  equiv-universal-property-localization-global-subuniverse e Z =
    is-local-comp
      ( is-local-is-equiv _
        ( is-equiv-map-equiv e)
        ( inclusion-global-subuniverse 𝒫 Z))
      ( H Z)

Localizations are maps with unique extensions

The map η : X → LX satisfies the universal property of localizations with respect to 𝒫 if and only if every map f : X → Z where Z is in 𝒫 has a unique extension along η

        f
    X ----> Z
    |      ∧
  η |    ⋰
    ∨  ⋰
    LX.
module _
  {α : Level  Level} {l1 l2 : Level} (𝒫 : global-subuniverse α)
  (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X)
  where

  forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse :
    universal-property-localization-global-subuniverse 𝒫 X LX 
    {l : Level} (Z : type-global-subuniverse 𝒫 l)
    (f : X  inclusion-global-subuniverse 𝒫 Z) 
    is-contr (extension (inclusion-extension-type-global-subuniverse 𝒫 LX) f)
  forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse
    H Z =
    is-contr-extension-is-local
      ( inclusion-extension-type-global-subuniverse 𝒫 LX)
      ( H Z)

  backward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse :
    ( {l : Level} (Z : type-global-subuniverse 𝒫 l)
      (f : X  inclusion-global-subuniverse 𝒫 Z) 
      is-contr
        ( extension (inclusion-extension-type-global-subuniverse 𝒫 LX) f)) 
    universal-property-localization-global-subuniverse 𝒫 X LX
  backward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse
    H Z =
    is-local-is-contr-extension
      ( inclusion-extension-type-global-subuniverse 𝒫 LX)
      ( H Z)

Localizations are essentially unique

This is Proposition 5.1.2 in [Rij19]. We formalize essential uniqueness with equivalences of extensions of the type X, as the universal property is a large proposition.

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 l3 : Level} {X : UU l1}
  (LX : extension-type-global-subuniverse 𝒫 l2 X)
  (LX' : extension-type-global-subuniverse 𝒫 l3 X)
  (H : universal-property-localization-global-subuniverse 𝒫 X LX)
  (H' : universal-property-localization-global-subuniverse 𝒫 X LX')
  where

  extension-map-essentially-unique-universal-property-localization-global-subuniverse :
    extension
      ( inclusion-extension-type-global-subuniverse 𝒫 LX)
      ( inclusion-extension-type-global-subuniverse 𝒫 LX')
  extension-map-essentially-unique-universal-property-localization-global-subuniverse =
    center
      ( forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse
        ( 𝒫)
        ( X)
        ( LX)
        ( H)
        ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX')
        ( inclusion-extension-type-global-subuniverse 𝒫 LX'))

  extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse :
    extension
      ( inclusion-extension-type-global-subuniverse 𝒫 LX')
      ( inclusion-extension-type-global-subuniverse 𝒫 LX)
  extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse =
    center
      ( forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse
        ( 𝒫)
        ( X)
        ( LX')
        ( H')
        ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX)
        ( inclusion-extension-type-global-subuniverse 𝒫 LX))

  map-essentially-unique-universal-property-localization-global-subuniverse :
    type-extension-type-global-subuniverse 𝒫 LX 
    type-extension-type-global-subuniverse 𝒫 LX'
  map-essentially-unique-universal-property-localization-global-subuniverse =
    map-extension
      extension-map-essentially-unique-universal-property-localization-global-subuniverse

  map-inv-essentially-unique-universal-property-localization-global-subuniverse :
    type-extension-type-global-subuniverse 𝒫 LX' 
    type-extension-type-global-subuniverse 𝒫 LX
  map-inv-essentially-unique-universal-property-localization-global-subuniverse =
    map-extension
      extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse

  abstract
    is-section-map-inv-essentially-unique-universal-property-localization-global-subuniverse :
      is-section
        map-essentially-unique-universal-property-localization-global-subuniverse
        map-inv-essentially-unique-universal-property-localization-global-subuniverse
    is-section-map-inv-essentially-unique-universal-property-localization-global-subuniverse =
      htpy-eq
        ( ap
          ( map-extension)
          ( eq-is-contr
            ( forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse
              ( 𝒫)
              ( X)
              ( LX')
              ( H')
              ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX')
              ( inclusion-extension-type-global-subuniverse 𝒫 LX'))
            { map-essentially-unique-universal-property-localization-global-subuniverse 
              map-inv-essentially-unique-universal-property-localization-global-subuniverse ,
              is-extension-comp-horizontal
                { f = inclusion-extension-type-global-subuniverse 𝒫 LX'}
                { inclusion-extension-type-global-subuniverse 𝒫 LX}
                { inclusion-extension-type-global-subuniverse 𝒫 LX'}
                { map-inv-essentially-unique-universal-property-localization-global-subuniverse}
                { map-essentially-unique-universal-property-localization-global-subuniverse}
                ( is-extension-map-extension
                    extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse)
                ( is-extension-map-extension
                    extension-map-essentially-unique-universal-property-localization-global-subuniverse)}
            { extension-along-self
              ( inclusion-extension-type-global-subuniverse 𝒫 LX')}))

  abstract
    is-retraction-map-inv-essentially-unique-universal-property-localization-global-subuniverse :
      is-retraction
        map-essentially-unique-universal-property-localization-global-subuniverse
        map-inv-essentially-unique-universal-property-localization-global-subuniverse
    is-retraction-map-inv-essentially-unique-universal-property-localization-global-subuniverse =
      htpy-eq
        ( ap
          ( map-extension)
          ( eq-is-contr
            ( forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse
              ( 𝒫)
              ( X)
              ( LX)
              ( H)
              ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX)
              ( inclusion-extension-type-global-subuniverse 𝒫 LX))
            { map-inv-essentially-unique-universal-property-localization-global-subuniverse 
              map-essentially-unique-universal-property-localization-global-subuniverse ,
              is-extension-comp-horizontal
                { f = inclusion-extension-type-global-subuniverse 𝒫 LX}
                { inclusion-extension-type-global-subuniverse 𝒫 LX'}
                { inclusion-extension-type-global-subuniverse 𝒫 LX}
                { map-essentially-unique-universal-property-localization-global-subuniverse}
                { map-inv-essentially-unique-universal-property-localization-global-subuniverse}
                ( is-extension-map-extension
                    extension-map-essentially-unique-universal-property-localization-global-subuniverse)
                ( is-extension-map-extension
                    extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse)}
            { extension-along-self
              ( inclusion-extension-type-global-subuniverse 𝒫 LX)}))

  is-equiv-map-essentially-unique-universal-property-localization-global-subuniverse :
    is-equiv
      map-essentially-unique-universal-property-localization-global-subuniverse
  is-equiv-map-essentially-unique-universal-property-localization-global-subuniverse =
    is-equiv-is-invertible
      map-inv-essentially-unique-universal-property-localization-global-subuniverse
      is-section-map-inv-essentially-unique-universal-property-localization-global-subuniverse
      is-retraction-map-inv-essentially-unique-universal-property-localization-global-subuniverse

  essentially-unique-type-universal-property-localization-global-subuniverse :
    type-extension-type-global-subuniverse 𝒫 LX 
    type-extension-type-global-subuniverse 𝒫 LX'
  essentially-unique-type-universal-property-localization-global-subuniverse =
    map-essentially-unique-universal-property-localization-global-subuniverse ,
    is-equiv-map-essentially-unique-universal-property-localization-global-subuniverse

  essentially-unique-extension-type-universal-property-localization-global-subuniverse :
    equiv-extension-type-global-subuniverse 𝒫 LX LX'
  essentially-unique-extension-type-universal-property-localization-global-subuniverse =
    essentially-unique-type-universal-property-localization-global-subuniverse ,
    is-extension-map-extension
      extension-map-essentially-unique-universal-property-localization-global-subuniverse

Localizations are unique

We formalize uniqueness with equality of extensions of the type X, as the universal property, that after all is a proposition, is large.

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 : Level} {X : UU l1}
  (LX LX' : extension-type-global-subuniverse 𝒫 l2 X)
  (H : universal-property-localization-global-subuniverse 𝒫 X LX)
  (H' : universal-property-localization-global-subuniverse 𝒫 X LX')
  where

  unique-type-universal-property-localization-global-subuniverse :
    type-extension-type-global-subuniverse 𝒫 LX 
    type-extension-type-global-subuniverse 𝒫 LX'
  unique-type-universal-property-localization-global-subuniverse =
    eq-equiv
      ( essentially-unique-type-universal-property-localization-global-subuniverse
        ( 𝒫)
        ( LX)
        ( LX')
        ( H)
        ( H'))

  unique-extension-type-universal-property-localization-global-subuniverse :
    LX  LX'
  unique-extension-type-universal-property-localization-global-subuniverse =
    eq-equiv-extension-type-global-subuniverse 𝒫 LX LX'
      ( essentially-unique-extension-type-universal-property-localization-global-subuniverse
        ( 𝒫)
        ( LX)
        ( LX')
        ( H)
        ( H'))

Equivalent conditions for the unit of the localization being an equivalence

Let η : X → LX be a localization of X at 𝒫, then the following are logically equivalent conditions:

  1. The type X is contained in 𝒫.
  2. The map η is an equivalence.
  3. The type X is local at η.
  4. The map η has a retraction.
  5. The precomposition map - ∘ η has a section at X.

This is Proposition 5.1.3 in [Rij19].

A type with a 𝒫-localization is in 𝒫 if and only if the unit is an equivalence

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 : Level} {X : UU l1}
  (LX : extension-type-global-subuniverse 𝒫 l2 X)
  (H : universal-property-localization-global-subuniverse 𝒫 X LX)
  where

  is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse :
    is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) 
    is-in-global-subuniverse 𝒫 X
  is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse
    K =
    is-closed-under-equiv-global-subuniverse 𝒫
      ( type-extension-type-global-subuniverse 𝒫 LX)
      ( X)
      ( inv-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX , K))
      ( is-in-global-subuniverse-type-extension-type-global-subuniverse 𝒫 LX)

  is-equiv-unit-is-in-global-subuniverse-universal-property-localization-global-subuniverse :
    is-in-global-subuniverse 𝒫 X 
    is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX)
  is-equiv-unit-is-in-global-subuniverse-universal-property-localization-global-subuniverse
    K =
    is-equiv-inclusion-extension-type-equiv
      ( extension-type-extension-type-global-subuniverse 𝒫 LX)
      ( X , id)
      ( essentially-unique-extension-type-universal-property-localization-global-subuniverse
        ( 𝒫)
        ( LX)
        ( ( X , K) , id)
        ( H)
        ( universal-property-localization-global-subuniverse-id 𝒫 (X , K)))
      ( is-equiv-id)

The unit of a 𝒫-localization is an equivalence if and only if the type is local at the unit

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 : Level} {X : UU l1}
  (LX : extension-type-global-subuniverse 𝒫 l2 X)
  (H : universal-property-localization-global-subuniverse 𝒫 X LX)
  where

  is-equiv-unit-is-local-type-universal-property-localization-global-subuniverse :
    is-local (inclusion-extension-type-global-subuniverse 𝒫 LX) X 
    is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX)
  is-equiv-unit-is-local-type-universal-property-localization-global-subuniverse
    K =
    is-equiv-is-local-domains
      ( inclusion-extension-type-global-subuniverse 𝒫 LX)
      ( K)
      ( H (type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX))

  is-local-type-is-equiv-unit-universal-property-localization-global-subuniverse :
    is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) 
    is-local (inclusion-extension-type-global-subuniverse 𝒫 LX) X
  is-local-type-is-equiv-unit-universal-property-localization-global-subuniverse
    K =
    H ( X ,
        is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse
          𝒫 LX H K)

  is-in-global-subuniverse-is-local-type-universal-property-localization-global-subuniverse :
    is-local (inclusion-extension-type-global-subuniverse 𝒫 LX) X 
    is-in-global-subuniverse 𝒫 X
  is-in-global-subuniverse-is-local-type-universal-property-localization-global-subuniverse
    K =
    is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse
      ( 𝒫)
      ( LX)
      ( H)
      ( is-equiv-unit-is-local-type-universal-property-localization-global-subuniverse
        ( K))

The unit of a 𝒫-localization is an equivalence if and only if it has a retraction

module _
  {α : Level  Level} (𝒫 : global-subuniverse α)
  {l1 l2 : Level} {X : UU l1}
  (LX : extension-type-global-subuniverse 𝒫 l2 X)
  (H : universal-property-localization-global-subuniverse 𝒫 X LX)
  where

  is-equiv-unit-retraction-universal-property-localization-global-subuniverse :
    retraction (inclusion-extension-type-global-subuniverse 𝒫 LX) 
    is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX)
  is-equiv-unit-retraction-universal-property-localization-global-subuniverse
    r =
    is-equiv-retraction-is-local-codomain
      ( inclusion-extension-type-global-subuniverse 𝒫 LX)
      ( r)
      ( H (type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX))

References

[Rij19]
Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.

Recent changes