The universal property of localizations at global subuniverses
Content created by Fredrik Bakke.
Created on 2025-02-03.
Last modified on 2025-02-03.
module orthogonal-factorization-systems.universal-property-localizations-at-global-subuniverses where
Imports
open import foundation.action-on-identifications-functions open import foundation.cartesian-product-types open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.extensions-types open import foundation.extensions-types-global-subuniverses open import foundation.function-extensionality open import foundation.function-types open import foundation.global-subuniverses open import foundation.homotopies open import foundation.identity-types open import foundation.precomposition-functions open import foundation.propositions open import foundation.retractions open import foundation.sections open import foundation.subuniverses open import foundation.unit-type open import foundation.univalence open import foundation.universe-levels open import orthogonal-factorization-systems.extensions-maps open import orthogonal-factorization-systems.types-local-at-maps
Idea
Let 𝒫
be a global subuniverse. Given a
type X
we say a type LX
in 𝒫
equipped with a
unit map η : X → LX
satisfies the
universal property of localizations¶
if every type Z
in 𝒫
is
η
-local. I.e., the
precomposition map
- ∘ η : (LX → Z) → (X → Z)
is an equivalence.
Definitions
The universal property of being a localization at a global subuniverse
module _ {α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X) where universal-property-localization-global-subuniverse-Level : (l : Level) → UU (α l ⊔ l1 ⊔ l2 ⊔ lsuc l) universal-property-localization-global-subuniverse-Level l = (Z : type-global-subuniverse 𝒫 l) → is-local ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( inclusion-global-subuniverse 𝒫 Z) universal-property-localization-global-subuniverse : UUω universal-property-localization-global-subuniverse = {l : Level} → universal-property-localization-global-subuniverse-Level l
The recursion principle of localization at a global subuniverse
module _ {α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X) where recursion-principle-localization-global-subuniverse-Level : (l : Level) → UU (α l ⊔ l1 ⊔ l2 ⊔ lsuc l) recursion-principle-localization-global-subuniverse-Level l = (Z : type-global-subuniverse 𝒫 l) → section ( precomp ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( inclusion-global-subuniverse 𝒫 Z)) recursion-principle-localization-global-subuniverse : UUω recursion-principle-localization-global-subuniverse = {l : Level} → recursion-principle-localization-global-subuniverse-Level l
Properties
Equivalences satisfy the universal property of localizations
module _ {α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X) where universal-property-localization-global-subuniverse-is-equiv : is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) → universal-property-localization-global-subuniverse 𝒫 X LX universal-property-localization-global-subuniverse-is-equiv H Z = is-local-is-equiv ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( H) ( inclusion-global-subuniverse 𝒫 Z) module _ {α : Level → Level} {l1 : Level} (𝒫 : global-subuniverse α) (X : type-global-subuniverse 𝒫 l1) where universal-property-localization-global-subuniverse-id : universal-property-localization-global-subuniverse 𝒫 ( inclusion-global-subuniverse 𝒫 X) ( X , id) universal-property-localization-global-subuniverse-id = universal-property-localization-global-subuniverse-is-equiv 𝒫 ( inclusion-global-subuniverse 𝒫 X) ( X , id) ( is-equiv-id)
Satisfying the universal property of localizations is a property
module _ {α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X) where is-prop-universal-property-localization-global-subuniverse-Level : {l : Level} → is-prop (universal-property-localization-global-subuniverse-Level 𝒫 X LX l) is-prop-universal-property-localization-global-subuniverse-Level = is-prop-Π ( λ Z → is-property-is-local ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( inclusion-global-subuniverse 𝒫 Z))
Localizations are closed under equivalences
module _ {α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X) (H : universal-property-localization-global-subuniverse 𝒫 X LX) where equiv-universal-property-localization-global-subuniverse : {l3 : Level} {Y : UU l3} (e : type-extension-type-global-subuniverse 𝒫 LX ≃ Y) → universal-property-localization-global-subuniverse 𝒫 X ( ( Y , is-closed-under-equiv-global-subuniverse 𝒫 ( type-extension-type-global-subuniverse 𝒫 LX) ( Y) ( e) ( is-in-global-subuniverse-type-extension-type-global-subuniverse ( 𝒫) ( LX))) , ( map-equiv e ∘ inclusion-extension-type-global-subuniverse 𝒫 LX)) equiv-universal-property-localization-global-subuniverse e Z = is-local-comp ( is-local-is-equiv _ ( is-equiv-map-equiv e) ( inclusion-global-subuniverse 𝒫 Z)) ( H Z)
Localizations are maps with unique extensions
The map η : X → LX
satisfies the universal property of localizations with
respect to 𝒫
if and only if every map f : X → Z
where Z
is in 𝒫
has a
unique extension along η
f
X ----> Z
| ∧
η | ⋰
∨ ⋰
LX.
module _ {α : Level → Level} {l1 l2 : Level} (𝒫 : global-subuniverse α) (X : UU l1) (LX : extension-type-global-subuniverse 𝒫 l2 X) where forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse : universal-property-localization-global-subuniverse 𝒫 X LX → {l : Level} (Z : type-global-subuniverse 𝒫 l) (f : X → inclusion-global-subuniverse 𝒫 Z) → is-contr (extension (inclusion-extension-type-global-subuniverse 𝒫 LX) f) forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse H Z = is-contr-extension-is-local ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( H Z) backward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse : ( {l : Level} (Z : type-global-subuniverse 𝒫 l) (f : X → inclusion-global-subuniverse 𝒫 Z) → is-contr ( extension (inclusion-extension-type-global-subuniverse 𝒫 LX) f)) → universal-property-localization-global-subuniverse 𝒫 X LX backward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse H Z = is-local-is-contr-extension ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( H Z)
Localizations are essentially unique
This is Proposition 5.1.2 in [Rij19]. We formalize essential uniqueness
with equivalences of extensions of the type X
, as the universal property is a
large proposition.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 l3 : Level} {X : UU l1} (LX : extension-type-global-subuniverse 𝒫 l2 X) (LX' : extension-type-global-subuniverse 𝒫 l3 X) (H : universal-property-localization-global-subuniverse 𝒫 X LX) (H' : universal-property-localization-global-subuniverse 𝒫 X LX') where extension-map-essentially-unique-universal-property-localization-global-subuniverse : extension ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( inclusion-extension-type-global-subuniverse 𝒫 LX') extension-map-essentially-unique-universal-property-localization-global-subuniverse = center ( forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse ( 𝒫) ( X) ( LX) ( H) ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX') ( inclusion-extension-type-global-subuniverse 𝒫 LX')) extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse : extension ( inclusion-extension-type-global-subuniverse 𝒫 LX') ( inclusion-extension-type-global-subuniverse 𝒫 LX) extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse = center ( forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse ( 𝒫) ( X) ( LX') ( H') ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX) ( inclusion-extension-type-global-subuniverse 𝒫 LX)) map-essentially-unique-universal-property-localization-global-subuniverse : type-extension-type-global-subuniverse 𝒫 LX → type-extension-type-global-subuniverse 𝒫 LX' map-essentially-unique-universal-property-localization-global-subuniverse = map-extension extension-map-essentially-unique-universal-property-localization-global-subuniverse map-inv-essentially-unique-universal-property-localization-global-subuniverse : type-extension-type-global-subuniverse 𝒫 LX' → type-extension-type-global-subuniverse 𝒫 LX map-inv-essentially-unique-universal-property-localization-global-subuniverse = map-extension extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse abstract is-section-map-inv-essentially-unique-universal-property-localization-global-subuniverse : is-section map-essentially-unique-universal-property-localization-global-subuniverse map-inv-essentially-unique-universal-property-localization-global-subuniverse is-section-map-inv-essentially-unique-universal-property-localization-global-subuniverse = htpy-eq ( ap ( map-extension) ( eq-is-contr ( forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse ( 𝒫) ( X) ( LX') ( H') ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX') ( inclusion-extension-type-global-subuniverse 𝒫 LX')) { map-essentially-unique-universal-property-localization-global-subuniverse ∘ map-inv-essentially-unique-universal-property-localization-global-subuniverse , is-extension-comp-horizontal { f = inclusion-extension-type-global-subuniverse 𝒫 LX'} { inclusion-extension-type-global-subuniverse 𝒫 LX} { inclusion-extension-type-global-subuniverse 𝒫 LX'} { map-inv-essentially-unique-universal-property-localization-global-subuniverse} { map-essentially-unique-universal-property-localization-global-subuniverse} ( is-extension-map-extension extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse) ( is-extension-map-extension extension-map-essentially-unique-universal-property-localization-global-subuniverse)} { extension-along-self ( inclusion-extension-type-global-subuniverse 𝒫 LX')})) abstract is-retraction-map-inv-essentially-unique-universal-property-localization-global-subuniverse : is-retraction map-essentially-unique-universal-property-localization-global-subuniverse map-inv-essentially-unique-universal-property-localization-global-subuniverse is-retraction-map-inv-essentially-unique-universal-property-localization-global-subuniverse = htpy-eq ( ap ( map-extension) ( eq-is-contr ( forward-implication-iff-unique-extensions-universal-property-localization-global-subuniverse ( 𝒫) ( X) ( LX) ( H) ( type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX) ( inclusion-extension-type-global-subuniverse 𝒫 LX)) { map-inv-essentially-unique-universal-property-localization-global-subuniverse ∘ map-essentially-unique-universal-property-localization-global-subuniverse , is-extension-comp-horizontal { f = inclusion-extension-type-global-subuniverse 𝒫 LX} { inclusion-extension-type-global-subuniverse 𝒫 LX'} { inclusion-extension-type-global-subuniverse 𝒫 LX} { map-essentially-unique-universal-property-localization-global-subuniverse} { map-inv-essentially-unique-universal-property-localization-global-subuniverse} ( is-extension-map-extension extension-map-essentially-unique-universal-property-localization-global-subuniverse) ( is-extension-map-extension extension-map-inv-essentially-unique-universal-property-localization-global-subuniverse)} { extension-along-self ( inclusion-extension-type-global-subuniverse 𝒫 LX)})) is-equiv-map-essentially-unique-universal-property-localization-global-subuniverse : is-equiv map-essentially-unique-universal-property-localization-global-subuniverse is-equiv-map-essentially-unique-universal-property-localization-global-subuniverse = is-equiv-is-invertible map-inv-essentially-unique-universal-property-localization-global-subuniverse is-section-map-inv-essentially-unique-universal-property-localization-global-subuniverse is-retraction-map-inv-essentially-unique-universal-property-localization-global-subuniverse essentially-unique-type-universal-property-localization-global-subuniverse : type-extension-type-global-subuniverse 𝒫 LX ≃ type-extension-type-global-subuniverse 𝒫 LX' essentially-unique-type-universal-property-localization-global-subuniverse = map-essentially-unique-universal-property-localization-global-subuniverse , is-equiv-map-essentially-unique-universal-property-localization-global-subuniverse essentially-unique-extension-type-universal-property-localization-global-subuniverse : equiv-extension-type-global-subuniverse 𝒫 LX LX' essentially-unique-extension-type-universal-property-localization-global-subuniverse = essentially-unique-type-universal-property-localization-global-subuniverse , is-extension-map-extension extension-map-essentially-unique-universal-property-localization-global-subuniverse
Localizations are unique
We formalize uniqueness with equality of extensions of the type X
, as the
universal property, that after all is a proposition, is large.
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 : Level} {X : UU l1} (LX LX' : extension-type-global-subuniverse 𝒫 l2 X) (H : universal-property-localization-global-subuniverse 𝒫 X LX) (H' : universal-property-localization-global-subuniverse 𝒫 X LX') where unique-type-universal-property-localization-global-subuniverse : type-extension-type-global-subuniverse 𝒫 LX = type-extension-type-global-subuniverse 𝒫 LX' unique-type-universal-property-localization-global-subuniverse = eq-equiv ( essentially-unique-type-universal-property-localization-global-subuniverse ( 𝒫) ( LX) ( LX') ( H) ( H')) unique-extension-type-universal-property-localization-global-subuniverse : LX = LX' unique-extension-type-universal-property-localization-global-subuniverse = eq-equiv-extension-type-global-subuniverse 𝒫 LX LX' ( essentially-unique-extension-type-universal-property-localization-global-subuniverse ( 𝒫) ( LX) ( LX') ( H) ( H'))
Equivalent conditions for the unit of the localization being an equivalence
Let η : X → LX
be a localization of X
at 𝒫
, then the following are
logically equivalent conditions:
- The type
X
is contained in𝒫
. - The map
η
is an equivalence. - The type
X
is local atη
. - The map
η
has a retraction. - The precomposition map
- ∘ η
has a section atX
.
This is Proposition 5.1.3 in [Rij19].
A type with a 𝒫
-localization is in 𝒫
if and only if the unit is an equivalence
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 : Level} {X : UU l1} (LX : extension-type-global-subuniverse 𝒫 l2 X) (H : universal-property-localization-global-subuniverse 𝒫 X LX) where is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse : is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) → is-in-global-subuniverse 𝒫 X is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse K = is-closed-under-equiv-global-subuniverse 𝒫 ( type-extension-type-global-subuniverse 𝒫 LX) ( X) ( inv-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX , K)) ( is-in-global-subuniverse-type-extension-type-global-subuniverse 𝒫 LX) is-equiv-unit-is-in-global-subuniverse-universal-property-localization-global-subuniverse : is-in-global-subuniverse 𝒫 X → is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) is-equiv-unit-is-in-global-subuniverse-universal-property-localization-global-subuniverse K = is-equiv-inclusion-extension-type-equiv ( extension-type-extension-type-global-subuniverse 𝒫 LX) ( X , id) ( essentially-unique-extension-type-universal-property-localization-global-subuniverse ( 𝒫) ( LX) ( ( X , K) , id) ( H) ( universal-property-localization-global-subuniverse-id 𝒫 (X , K))) ( is-equiv-id)
The unit of a 𝒫
-localization is an equivalence if and only if the type is local at the unit
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 : Level} {X : UU l1} (LX : extension-type-global-subuniverse 𝒫 l2 X) (H : universal-property-localization-global-subuniverse 𝒫 X LX) where is-equiv-unit-is-local-type-universal-property-localization-global-subuniverse : is-local (inclusion-extension-type-global-subuniverse 𝒫 LX) X → is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) is-equiv-unit-is-local-type-universal-property-localization-global-subuniverse K = is-equiv-is-local-domains ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( K) ( H (type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX)) is-local-type-is-equiv-unit-universal-property-localization-global-subuniverse : is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) → is-local (inclusion-extension-type-global-subuniverse 𝒫 LX) X is-local-type-is-equiv-unit-universal-property-localization-global-subuniverse K = H ( X , is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse 𝒫 LX H K) is-in-global-subuniverse-is-local-type-universal-property-localization-global-subuniverse : is-local (inclusion-extension-type-global-subuniverse 𝒫 LX) X → is-in-global-subuniverse 𝒫 X is-in-global-subuniverse-is-local-type-universal-property-localization-global-subuniverse K = is-in-global-subuniverse-is-equiv-unit-universal-property-localization-global-subuniverse ( 𝒫) ( LX) ( H) ( is-equiv-unit-is-local-type-universal-property-localization-global-subuniverse ( K))
The unit of a 𝒫
-localization is an equivalence if and only if it has a retraction
module _ {α : Level → Level} (𝒫 : global-subuniverse α) {l1 l2 : Level} {X : UU l1} (LX : extension-type-global-subuniverse 𝒫 l2 X) (H : universal-property-localization-global-subuniverse 𝒫 X LX) where is-equiv-unit-retraction-universal-property-localization-global-subuniverse : retraction (inclusion-extension-type-global-subuniverse 𝒫 LX) → is-equiv (inclusion-extension-type-global-subuniverse 𝒫 LX) is-equiv-unit-retraction-universal-property-localization-global-subuniverse r = is-equiv-retraction-is-local-codomain ( inclusion-extension-type-global-subuniverse 𝒫 LX) ( r) ( H (type-global-subuniverse-extension-type-global-subuniverse 𝒫 LX))
References
- [Rij19]
- Egbert Rijke. Classifying Types. PhD thesis, Carnegie Mellon University, 06 2019. arXiv:1906.09435.
Recent changes
- 2025-02-03. Fredrik Bakke. Reflective global subuniverses (#1228).