Truncation images of maps
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Daniel Gratzer and Elisabeth Stenholm.
Created on 2022-07-19.
Last modified on 2023-12-21.
module foundation.truncation-images-of-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.connected-maps open import foundation.dependent-pair-types open import foundation.fibers-of-maps open import foundation.functoriality-truncation open import foundation.identity-types open import foundation.truncations open import foundation.universe-levels open import foundation-core.equality-dependent-pair-types open import foundation-core.equivalences open import foundation-core.functoriality-dependent-pair-types open import foundation-core.transport-along-identifications open import foundation-core.truncated-maps open import foundation-core.truncation-levels
Idea
The k
-truncation image of a map f : A → B
is the type trunc-im k f
that fits in the (k
-connected,k
-truncated) factorization of f
. It is
defined as the type
trunc-im k f := Σ (y : B), type-trunc k (fiber f y)
Definition
module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where trunc-im : UU (l1 ⊔ l2) trunc-im = Σ B (λ y → type-trunc k (fiber f y)) unit-trunc-im : A → trunc-im pr1 (unit-trunc-im x) = f x pr2 (unit-trunc-im x) = unit-trunc (pair x refl) projection-trunc-im : trunc-im → B projection-trunc-im = pr1
Properties
Characterization of the identity types of k+1
-truncation images
module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where Eq-unit-trunc-im : A → A → UU (l1 ⊔ l2) Eq-unit-trunc-im x y = trunc-im k (ap f {x} {y}) extensionality-trunc-im : (x y : A) → ( unit-trunc-im (succ-𝕋 k) f x = unit-trunc-im (succ-𝕋 k) f y) ≃ ( Eq-unit-trunc-im x y) extensionality-trunc-im x y = ( equiv-tot ( λ q → ( equiv-trunc k ( ( equiv-tot ( λ p → equiv-concat (inv right-unit) q)) ∘e ( equiv-Eq-eq-fiber f (f y)))) ∘e ( inv-equiv (effectiveness-trunc k (x , q) (y , refl))) ∘e ( equiv-concat ( ap unit-trunc (compute-tr-fiber f q (x , refl))) ( unit-trunc (y , refl))) ∘e ( equiv-concat ( preserves-tr (λ _ → unit-trunc) q (x , refl)) ( unit-trunc (y , refl))))) ∘e ( equiv-pair-eq-Σ ( unit-trunc-im (succ-𝕋 k) f x) ( unit-trunc-im (succ-𝕋 k) f y))
The map projection-trunc-im k is k-truncated
module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where is-trunc-map-projection-trunc-im : is-trunc-map k (projection-trunc-im k f) is-trunc-map-projection-trunc-im = is-trunc-map-pr1 k (λ _ → is-trunc-type-trunc)
The map unit-trunc-im k is k-connected
module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where is-connected-map-unit-trunc-im : is-connected-map k (unit-trunc-im k f) is-connected-map-unit-trunc-im = is-connected-map-comp k ( is-connected-map-tot-is-fiberwise-connected-map k ( λ b → unit-trunc) ( λ b → is-connected-map-unit-trunc k)) ( is-connected-map-is-equiv (is-equiv-map-inv-equiv-total-fiber f))
Recent changes
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-27. Elisabeth Stenholm, Daniel Gratzer and Egbert Rijke. Additions during work on material set theory in HoTT (#910).
- 2023-09-06. Egbert Rijke. Rename fib to fiber (#722).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-06-08. Fredrik Bakke. Remove empty
foundation
modules and replace them by their core counterparts (#644).