Spans of families of types
Content created by Egbert Rijke.
Created on 2024-01-28.
Last modified on 2024-01-28.
module foundation.spans-families-of-types where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import foundation-core.equivalences open import foundation-core.function-types
Idea
Consider a family of types A i
indexed by i : I
. A
span¶ on
A
consists of a type S
equipped with a family of maps
(i : I) → S → A i.
The type S
is called the
spanning type¶
of the span.
Definitions
Spans on families of types
module _ {l1 l2 : Level} (l3 : Level) {I : UU l1} (A : I → UU l2) where span-type-family : UU (l1 ⊔ l2 ⊔ lsuc l3) span-type-family = Σ (UU l3) (λ S → (i : I) → S → A i) module _ {l1 l2 l3 : Level} {I : UU l1} {A : I → UU l2} (s : span-type-family l3 A) where spanning-type-span-type-family : UU l3 spanning-type-span-type-family = pr1 s map-span-type-family : (i : I) → spanning-type-span-type-family → A i map-span-type-family = pr2 s
See also
Recent changes
- 2024-01-28. Egbert Rijke. Span diagrams (#1007).