Types local at maps
Content created by Fredrik Bakke.
Created on 2024-11-19.
Last modified on 2024-11-19.
module orthogonal-factorization-systems.types-local-at-maps where
Imports
open import foundation.action-on-identifications-functions open import foundation.commuting-squares-of-maps open import foundation.contractible-maps open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.dependent-universal-property-equivalences open import foundation.empty-types open import foundation.equivalences open import foundation.families-of-equivalences open import foundation.function-extensionality open import foundation.function-types open import foundation.functoriality-dependent-function-types open import foundation.homotopies open import foundation.identity-types open import foundation.logical-equivalences open import foundation.postcomposition-functions open import foundation.precomposition-dependent-functions open import foundation.precomposition-functions open import foundation.propositions open import foundation.retracts-of-maps open import foundation.retracts-of-types open import foundation.sections open import foundation.type-arithmetic-dependent-function-types open import foundation.type-arithmetic-unit-type open import foundation.unit-type open import foundation.universal-property-empty-type open import foundation.universal-property-equivalences open import foundation.universe-levels
Idea
A dependent type A
over Y
is said to be
local at¶ f : X → Y
, or
f
-local¶ , if the
precomposition map
_∘ f : ((y : Y) → A y) → ((x : X) → A (f x))
is an equivalence.
We reserve the name is-local
for when A
does not vary over Y
, and specify
with is-local-dependent-type
when it does.
Note that a local dependent type is not the same as a
local family.
While a local family is a type family P
on some other indexing type A
, such
that each fiber is local as a nondependent type over Y
, a local dependent type
is a local type that additionally may vary over Y
. Concretely, a local
dependent type A
may be understood as a family of types such that for every
y : Y
, A y
is
fiber f y
-null.
Definition
Local dependent types
module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) (A : Y → UU l3) where is-local-dependent-type : UU (l1 ⊔ l2 ⊔ l3) is-local-dependent-type = is-equiv (precomp-Π f A) is-property-is-local-dependent-type : is-prop is-local-dependent-type is-property-is-local-dependent-type = is-property-is-equiv (precomp-Π f A) is-local-dependent-type-Prop : Prop (l1 ⊔ l2 ⊔ l3) pr1 is-local-dependent-type-Prop = is-local-dependent-type pr2 is-local-dependent-type-Prop = is-property-is-local-dependent-type
Local types
module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) (A : UU l3) where is-local : UU (l1 ⊔ l2 ⊔ l3) is-local = is-local-dependent-type f (λ _ → A) is-property-is-local : is-prop is-local is-property-is-local = is-property-is-local-dependent-type f (λ _ → A) is-local-Prop : Prop (l1 ⊔ l2 ⊔ l3) is-local-Prop = is-local-dependent-type-Prop f (λ _ → A)
Properties
Locality distributes over Π-types
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where distributive-Π-is-local-dependent-type : {l3 l4 : Level} {A : UU l3} (B : A → Y → UU l4) → ((a : A) → is-local-dependent-type f (B a)) → is-local-dependent-type f (λ x → (a : A) → B a x) distributive-Π-is-local-dependent-type B f-loc = is-equiv-map-equiv ( ( equiv-swap-Π) ∘e ( equiv-Π-equiv-family (λ a → precomp-Π f (B a) , (f-loc a))) ∘e ( equiv-swap-Π)) distributive-Π-is-local : {l3 l4 : Level} {A : UU l3} (B : A → UU l4) → ((a : A) → is-local f (B a)) → is-local f ((a : A) → B a) distributive-Π-is-local B = distributive-Π-is-local-dependent-type (λ a _ → B a)
Local types are closed under equivalences
module _ {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} {A : Y → UU l3} {B : Y → UU l4} (f : X → Y) where is-local-dependent-type-fam-equiv : fam-equiv A B → is-local-dependent-type f B → is-local-dependent-type f A is-local-dependent-type-fam-equiv e is-local-B = is-equiv-htpy-equiv ( ( equiv-Π-equiv-family (inv-equiv ∘ e ∘ f)) ∘e ( precomp-Π f B , is-local-B) ∘e ( equiv-Π-equiv-family e)) ( λ g → eq-htpy (λ y → inv (is-retraction-map-inv-equiv (e (f y)) (g (f y))))) is-local-dependent-type-inv-fam-equiv : fam-equiv B A → is-local-dependent-type f B → is-local-dependent-type f A is-local-dependent-type-inv-fam-equiv e = is-local-dependent-type-fam-equiv (inv-equiv ∘ e) module _ {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} {A : UU l3} {B : UU l4} (f : X → Y) where is-local-equiv : A ≃ B → is-local f B → is-local f A is-local-equiv e = is-local-dependent-type-fam-equiv f (λ _ → e) is-local-inv-equiv : B ≃ A → is-local f B → is-local f A is-local-inv-equiv e = is-local-dependent-type-inv-fam-equiv f (λ _ → e)
Local types are closed under retracts
module _ {l1 l2 l3 l4 : Level} {X : UU l1} {Y : UU l2} {A : UU l3} {B : UU l4} {f : X → Y} where is-local-retract : A retract-of B → is-local f B → is-local f A is-local-retract R = is-equiv-retract-map-is-equiv' ( precomp f A) ( precomp f B) ( retract-postcomp Y R) ( retract-postcomp X R) ( refl-htpy) ( refl-htpy)
Locality is preserved by homotopies
module _ {l1 l2 l3 : Level} {X : UU l1} {Y : UU l2} {A : UU l3} {f f' : X → Y} where is-local-htpy : (H : f ~ f') → is-local f' A → is-local f A is-local-htpy H = is-equiv-htpy (precomp f' A) (htpy-precomp H A) is-local-htpy' : (H : f ~ f') → is-local f A → is-local f' A is-local-htpy' H = is-equiv-htpy' (precomp f A) (htpy-precomp H A)
If S
is f
-local then S
is local at every retract of f
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R : f retract-of-map g) (S : UU l5) where is-local-retract-map-is-local : is-local g S → is-local f S is-local-retract-map-is-local = is-equiv-retract-map-is-equiv ( precomp f S) ( precomp g S) ( retract-map-precomp-retract-map f g R S)
In fact, the higher coherence of the retract is not needed:
module _ {l1 l2 l3 l4 l5 : Level} {A : UU l1} {B : UU l2} {X : UU l3} {Y : UU l4} (f : A → B) (g : X → Y) (R₀ : A retract-of X) (R₁ : B retract-of Y) (i : coherence-square-maps' (inclusion-retract R₀) f g (inclusion-retract R₁)) (r : coherence-square-maps' ( map-retraction-retract R₀) ( g) ( f) ( map-retraction-retract R₁)) (S : UU l5) where is-local-retract-map-is-local' : is-local g S → is-local f S is-local-retract-map-is-local' = is-equiv-retract-map-is-equiv' ( precomp f S) ( precomp g S) ( retract-precomp R₁ S) ( retract-precomp R₀ S) ( precomp-coherence-square-maps ( g) ( map-retraction-retract R₀) ( map-retraction-retract R₁) ( f) ( r) ( S)) ( precomp-coherence-square-maps ( f) ( inclusion-retract R₀) ( inclusion-retract R₁) ( g) ( i) ( S))
If every type is f
-local, then f
is an equivalence
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-equiv-is-local : ({l : Level} (A : UU l) → is-local f A) → is-equiv f is-equiv-is-local = is-equiv-is-equiv-precomp f
If the domain and codomain of f
is f
-local, then f
is an equivalence
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where section-is-local-domains' : section (precomp f X) → is-local f Y → section f pr1 (section-is-local-domains' section-precomp-X is-local-Y) = pr1 section-precomp-X id pr2 (section-is-local-domains' section-precomp-X is-local-Y) = htpy-eq ( ap ( pr1) { ( f ∘ pr1 (section-is-local-domains' section-precomp-X is-local-Y)) , ( ap (postcomp X f) (pr2 section-precomp-X id))} { id , refl} ( eq-is-contr (is-contr-map-is-equiv is-local-Y f))) is-equiv-is-local-domains' : section (precomp f X) → is-local f Y → is-equiv f pr1 (is-equiv-is-local-domains' section-precomp-X is-local-Y) = section-is-local-domains' section-precomp-X is-local-Y pr2 (is-equiv-is-local-domains' section-precomp-X is-local-Y) = retraction-section-precomp-domain f section-precomp-X is-equiv-is-local-domains : is-local f X → is-local f Y → is-equiv f is-equiv-is-local-domains is-local-X = is-equiv-is-local-domains' (pr1 is-local-X)
Propositions are f
-local if - ∘ f
has a converse
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-local-dependent-type-is-prop : {l : Level} (A : Y → UU l) → ((y : Y) → is-prop (A y)) → (((x : X) → A (f x)) → ((y : Y) → A y)) → is-local-dependent-type f A is-local-dependent-type-is-prop A is-prop-A = is-equiv-has-converse-is-prop ( is-prop-Π is-prop-A) ( is-prop-Π (is-prop-A ∘ f)) is-local-is-prop : {l : Level} (A : UU l) → is-prop A → ((X → A) → (Y → A)) → is-local f A is-local-is-prop A is-prop-A = is-local-dependent-type-is-prop (λ _ → A) (λ _ → is-prop-A)
All type families are local at equivalences
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-local-dependent-type-is-equiv : is-equiv f → {l : Level} (A : Y → UU l) → is-local-dependent-type f A is-local-dependent-type-is-equiv is-equiv-f = is-equiv-precomp-Π-is-equiv is-equiv-f is-local-is-equiv : is-equiv f → {l : Level} (A : UU l) → is-local f A is-local-is-equiv is-equiv-f = is-equiv-precomp-is-equiv f is-equiv-f
Contractible types are local at any map
module _ {l1 l2 : Level} {X : UU l1} {Y : UU l2} (f : X → Y) where is-local-dependent-type-is-contr : {l : Level} (A : Y → UU l) → ((y : Y) → is-contr (A y)) → is-local-dependent-type f A is-local-dependent-type-is-contr A is-contr-A = is-equiv-is-contr ( precomp-Π f A) ( is-contr-Π is-contr-A) ( is-contr-Π (is-contr-A ∘ f)) is-local-is-contr : {l : Level} (A : UU l) → is-contr A → is-local f A is-local-is-contr A is-contr-A = is-local-dependent-type-is-contr (λ _ → A) (λ _ → is-contr-A)
A type that is local at the unique map empty → unit
is contractible
is-contr-is-local : {l : Level} (A : UU l) → is-local (λ (_ : empty) → star) A → is-contr A is-contr-is-local A is-local-A = is-contr-equiv ( empty → A) ( (precomp (λ _ → star) A , is-local-A) ∘e inv-left-unit-law-Π (λ _ → A)) ( universal-property-empty' A)
See also
Recent changes
- 2024-11-19. Fredrik Bakke. Renamings and rewordings OFS (#1188).