Deloopable types

Content created by Egbert Rijke.

Created on 2024-03-23.
Last modified on 2024-03-23.

module higher-group-theory.deloopable-types where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.small-types
open import foundation.universe-levels

open import higher-group-theory.equivalences-higher-groups
open import higher-group-theory.higher-groups
open import higher-group-theory.small-higher-groups

open import structured-types.pointed-equivalences
open import structured-types.pointed-types
open import structured-types.small-pointed-types

Idea

Consider a pointed type X and a pointed connected type Y. We say that Y is a delooping of X if we have a pointed equivalence

  X ≃∗ Ω Y.

Recall that a pointed connected type is an ∞-group. An ∞-group G is therefore a delooping of X if its underlying pointed type is pointed equivalent to X. A delooping of X therefore consist of an ∞-group G and a pointed equivalence

  X ≃∗ type-∞-Group G

In other words, the type of deloopings of X is defined to be

  delooping X := Σ (Y : ∞-Group), X ≃∗ Ω Y.

Relation to higher group structures

A delooping of a pointed type X is, in quite a literal way, an ∞-group structure on X. In other words, the type delooping X is the type of ∞-group structures on X. Indeed, the type of all pointed types equipped with deloopings is equivalent to the type of ∞-groups, by extensionality of the type of pointed types.

Being deloopable is therefore a structure, and usually not a property. If there are multiple distinct ways to equip a pointed type X with the structure of an ∞-group, or even with the structure of a group, then the type of deloopings of X will not be a proposition. For instance, the standard 4-element type Fin 4 is deloopable in multiple distinct ways, by equipping it with the cyclic group structure of ℤ₄ or by equipping it with the group structure of ℤ₂ × ℤ₂.

Universe levels in the definition of being deloopable

Note that there is a small question about universe levels in the definition of being a deloopable type. We say that a type is deloopable in a universe 𝒰 if there is an ∞-group Y in the universe 𝒰 that is a delooping of X. However, by the type theoretic replacement principle it follows that any delooping of X is always small with respect to the universe of X itself. Therefore we simply say that X is deloopable, i.e., without reference to any universes, if X is deloopable in its own universe.

Definitions

The predicate of being a delooping

module _
  {l1 l2 : Level} (X : Pointed-Type l1)
  where

  is-delooping : (G : ∞-Group l2)  UU (l1  l2)
  is-delooping G = X ≃∗ pointed-type-∞-Group G

The type of deloopings of a pointed type, in a given universe

module _
  {l1 : Level} (X : Pointed-Type l1)
  where

  delooping-Level : (l : Level)  UU (l1  lsuc l)
  delooping-Level l = Σ (∞-Group l) (is-delooping X)

  module _
    {l : Level} (Y : delooping-Level l)
    where

    ∞-group-delooping-Level : ∞-Group l
    ∞-group-delooping-Level = pr1 Y

    classifying-pointed-type-∞-group-delooping-Level : Pointed-Type l
    classifying-pointed-type-∞-group-delooping-Level =
      classifying-pointed-type-∞-Group ∞-group-delooping-Level

    classifying-type-∞-group-delooping-Level : UU l
    classifying-type-∞-group-delooping-Level =
      classifying-type-∞-Group ∞-group-delooping-Level

    is-delooping-delooping-Level : is-delooping X ∞-group-delooping-Level
    is-delooping-delooping-Level = pr2 Y

    equiv-is-delooping-delooping-Level :
      type-Pointed-Type X  type-∞-Group ∞-group-delooping-Level
    equiv-is-delooping-delooping-Level =
      equiv-pointed-equiv is-delooping-delooping-Level

The type of deloopings of a pointed type

module _
  {l1 : Level} (X : Pointed-Type l1)
  where

  delooping : UU (lsuc l1)
  delooping = delooping-Level X l1

Properties

The delooping of a pointed type in a universe 𝒰 is a 𝒰-small ∞-group

module _
  {l1 l2 : Level} (X : Pointed-Type l1) (H : delooping-Level X l2)
  where

  abstract
    is-small-∞-group-delooping-Level :
      is-small-∞-Group l1 (∞-group-delooping-Level X H)
    pr1 is-small-∞-group-delooping-Level = type-Pointed-Type X
    pr2 is-small-∞-group-delooping-Level =
      inv-equiv (equiv-is-delooping-delooping-Level X H)

  abstract
    is-small-classifying-type-∞-group-delooping-Level :
      is-small l1 (classifying-type-∞-group-delooping-Level X H)
    is-small-classifying-type-∞-group-delooping-Level =
      is-small-classifying-type-is-small-∞-Group
        ( ∞-group-delooping-Level X H)
        ( is-small-∞-group-delooping-Level)

  abstract
    is-pointed-small-classifying-pointed-type-∞-group-delooping-Level :
      is-pointed-small-Pointed-Type l1
        ( classifying-pointed-type-∞-group-delooping-Level X H)
    is-pointed-small-classifying-pointed-type-∞-group-delooping-Level =
      is-pointed-small-is-small-Pointed-Type
        ( classifying-pointed-type-∞-group-delooping-Level X H)
        ( is-small-classifying-type-∞-group-delooping-Level)

If a pointed type in universe 𝒰 l1 is deloopable in any universe, then it is deloopable in 𝒰 l1

Suppose X is a pointed type of universe level l1, which is deloopable in universe level l2. Then there is an ∞-group H of universe level l2 equipped with a pointed equivalence

  X ≃∗ type-∞-Group H.

This implies that the ∞-group H is l1-small, because its underlying type is equivalent to the underlying type of X. Hence there is an ∞-group K equipped with an equivalence of ∞-groups

  H ≃ K.
module _
  {l1 l2 : Level} (X : Pointed-Type l1) (H : delooping-Level X l2)
  where

  ∞-group-delooping-delooping-level : ∞-Group l1
  ∞-group-delooping-delooping-level =
    ∞-group-is-small-∞-Group
      ( ∞-group-delooping-Level X H)
      ( type-Pointed-Type X ,
        equiv-inv-pointed-equiv (is-delooping-delooping-Level X H))

  is-delooping-delooping-delooping-Level :
    is-delooping X ∞-group-delooping-delooping-level
  is-delooping-delooping-delooping-Level =
    comp-pointed-equiv
      ( pointed-equiv-equiv-∞-Group
        ( ∞-group-delooping-Level X H)
        ( ∞-group-delooping-delooping-level)
        ( equiv-∞-group-is-small-∞-Group
          ( ∞-group-delooping-Level X H)
          ( type-Pointed-Type X ,
            equiv-inv-pointed-equiv (is-delooping-delooping-Level X H))))
      ( is-delooping-delooping-Level X H)

  delooping-delooping-Level : delooping X
  pr1 delooping-delooping-Level = ∞-group-delooping-delooping-level
  pr2 delooping-delooping-Level = is-delooping-delooping-delooping-Level

See also

Recent changes