Nonpositive real numbers
Content created by Louis Wasserman.
Created on 2026-01-11.
Last modified on 2026-01-11.
{-# OPTIONS --lossy-unification #-} module real-numbers.nonpositive-real-numbers where
Imports
open import foundation.dependent-pair-types open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import real-numbers.dedekind-real-numbers open import real-numbers.inequality-real-numbers open import real-numbers.rational-real-numbers
Idea
A real number is nonpositive¶ if it is less than or equal to zero.
Definition
is-nonpositive-prop-ℝ : {l : Level} → ℝ l → Prop l is-nonpositive-prop-ℝ x = leq-prop-ℝ x zero-ℝ is-nonpositive-ℝ : {l : Level} → ℝ l → UU l is-nonpositive-ℝ x = leq-ℝ x zero-ℝ ℝ⁰⁻ : (l : Level) → UU (lsuc l) ℝ⁰⁻ l = type-subtype (is-nonpositive-prop-ℝ {l}) real-ℝ⁰⁻ : {l : Level} → ℝ⁰⁻ l → ℝ l real-ℝ⁰⁻ = pr1 is-nonpositive-real-ℝ⁰⁻ : {l : Level} (x : ℝ⁰⁻ l) → is-nonpositive-ℝ (real-ℝ⁰⁻ x) is-nonpositive-real-ℝ⁰⁻ = pr2
Recent changes
- 2026-01-11. Louis Wasserman. Alternation of sequences (#1763).