Trivial group homomorphisms

Content created by Egbert Rijke and Fredrik Bakke.

Created on 2023-08-21.
Last modified on 2023-11-24.

module group-theory.trivial-group-homomorphisms where
Imports
open import foundation.dependent-pair-types
open import foundation.identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import group-theory.groups
open import group-theory.homomorphisms-groups

Idea

A trivial group homomorphism from G to H is a group homomorphism f : G → H such that f x = 1 for every x : G.

Definitions

The predicate of being a trivial group homomorphism

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H)
  where

  is-trivial-prop-hom-Group : Prop (l1  l2)
  is-trivial-prop-hom-Group =
    Π-Prop
      ( type-Group G)
      ( λ x  Id-Prop (set-Group H) (map-hom-Group G H f x) (unit-Group H))

  is-trivial-hom-Group : UU (l1  l2)
  is-trivial-hom-Group = type-Prop is-trivial-prop-hom-Group

  is-prop-is-trivial-hom-Group : is-prop is-trivial-hom-Group
  is-prop-is-trivial-hom-Group = is-prop-type-Prop is-trivial-prop-hom-Group

The trivial group homomorphism

module _
  {l1 l2 : Level} (G : Group l1) (H : Group l2)
  where

  trivial-hom-Group : hom-Group G H
  pr1 trivial-hom-Group x = unit-Group H
  pr2 trivial-hom-Group = inv (left-unit-law-mul-Group H (unit-Group H))

Recent changes