Trivial group homomorphisms
Content created by Egbert Rijke and Fredrik Bakke.
Created on 2023-08-21.
Last modified on 2023-11-24.
module group-theory.trivial-group-homomorphisms where
Imports
open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import group-theory.groups open import group-theory.homomorphisms-groups
Idea
A trivial group homomorphism from G
to H
is a
group homomorphism f : G → H
such that
f x = 1
for every x : G
.
Definitions
The predicate of being a trivial group homomorphism
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) (f : hom-Group G H) where is-trivial-prop-hom-Group : Prop (l1 ⊔ l2) is-trivial-prop-hom-Group = Π-Prop ( type-Group G) ( λ x → Id-Prop (set-Group H) (map-hom-Group G H f x) (unit-Group H)) is-trivial-hom-Group : UU (l1 ⊔ l2) is-trivial-hom-Group = type-Prop is-trivial-prop-hom-Group is-prop-is-trivial-hom-Group : is-prop is-trivial-hom-Group is-prop-is-trivial-hom-Group = is-prop-type-Prop is-trivial-prop-hom-Group
The trivial group homomorphism
module _ {l1 l2 : Level} (G : Group l1) (H : Group l2) where trivial-hom-Group : hom-Group G H pr1 trivial-hom-Group x = unit-Group H pr2 trivial-hom-Group = inv (left-unit-law-mul-Group H (unit-Group H))
Recent changes
- 2023-11-24. Egbert Rijke. Abelianization (#877).
- 2023-09-26. Fredrik Bakke and Egbert Rijke. Maps of categories, functor categories, and small subprecategories (#794).
- 2023-08-21. Egbert Rijke and Fredrik Bakke. Cyclic groups (#697).