Images of metric spaces under short maps
Content created by Fredrik Bakke and Louis Wasserman.
Created on 2026-01-01.
Last modified on 2026-01-01.
module metric-spaces.images-short-maps-metric-spaces where
Imports
open import foundation.dependent-pair-types open import foundation.images open import foundation.universe-levels open import metric-spaces.images-metric-spaces open import metric-spaces.maps-metric-spaces open import metric-spaces.metric-spaces open import metric-spaces.short-maps-metric-spaces
Idea
Given a short map between
metric spaces f : X → Y, the unit map of the
image of f is short.
Definition
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : short-map-Metric-Space X Y) where im-short-map-Metric-Space : Metric-Space (l1 ⊔ l3) l4 im-short-map-Metric-Space = im-Metric-Space X Y (map-short-map-Metric-Space X Y f) map-unit-im-short-map-Metric-Space : map-Metric-Space X im-short-map-Metric-Space map-unit-im-short-map-Metric-Space = map-unit-im (map-short-map-Metric-Space X Y f)
Properties
The unit map of the image of a short map is short
module _ {l1 l2 l3 l4 : Level} (X : Metric-Space l1 l2) (Y : Metric-Space l3 l4) (f : short-map-Metric-Space X Y) where is-short-map-unit-im-short-map-Metric-Space : is-short-map-Metric-Space ( X) ( im-short-map-Metric-Space X Y f) ( map-unit-im-short-map-Metric-Space X Y f) is-short-map-unit-im-short-map-Metric-Space = is-short-map-short-map-Metric-Space X Y f short-map-unit-im-short-map-Metric-Space : short-map-Metric-Space X (im-short-map-Metric-Space X Y f) short-map-unit-im-short-map-Metric-Space = ( map-unit-im-short-map-Metric-Space X Y f , is-short-map-unit-im-short-map-Metric-Space)
Recent changes
- 2026-01-01. Louis Wasserman and Fredrik Bakke. Use map terminology consistently in metric spaces (#1778).