Functoriality of truncations
Content created by Fredrik Bakke, Egbert Rijke, Jonathan Prieto-Cubides, Elisabeth Stenholm and Tom de Jong.
Created on 2022-06-15.
Last modified on 2024-04-17.
module foundation.functoriality-truncation where
Imports
open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.function-extensionality open import foundation.truncations open import foundation.universe-levels open import foundation.whiskering-homotopies-composition open import foundation-core.commuting-squares-of-maps open import foundation-core.contractible-types open import foundation-core.equivalences open import foundation-core.function-types open import foundation-core.homotopies open import foundation-core.retractions open import foundation-core.retracts-of-types open import foundation-core.sections open import foundation-core.truncation-levels
Idea
The universal property of truncations can be used to define the functorial action of truncations.
Definition
module _ {l1 l2 : Level} (k : 𝕋) {A : UU l1} {B : UU l2} (f : A → B) where unique-map-trunc : is-contr ( Σ ( type-trunc k A → type-trunc k B) ( coherence-square-maps f unit-trunc unit-trunc)) unique-map-trunc = universal-property-trunc k A (trunc k B) (unit-trunc ∘ f) map-trunc : type-trunc k A → type-trunc k B map-trunc = pr1 (center unique-map-trunc) coherence-square-map-trunc : coherence-square-maps f unit-trunc unit-trunc map-trunc coherence-square-map-trunc = pr2 (center unique-map-trunc)
Properties
Truncations of homotopic maps are homotopic
naturality-unit-trunc : {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : 𝕋) (f : A → B) → map-trunc k f ∘ unit-trunc ~ unit-trunc ∘ f naturality-unit-trunc k f = pr2 (center (unique-map-trunc k f)) htpy-uniqueness-map-trunc : {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : 𝕋) (f : A → B) → (h : type-trunc k A → type-trunc k B) → h ∘ unit-trunc ~ unit-trunc ∘ f → map-trunc k f ~ h htpy-uniqueness-map-trunc k f h H = htpy-eq (ap pr1 (contraction (unique-map-trunc k f) (h , H))) htpy-trunc : {l1 l2 : Level} {A : UU l1} {B : UU l2} {k : 𝕋} {f g : A → B} → f ~ g → map-trunc k f ~ map-trunc k g htpy-trunc {k = k} {f} {g} H = htpy-uniqueness-map-trunc ( k) ( f) ( map-trunc k g) ( naturality-unit-trunc k g ∙h inv-htpy (unit-trunc ·l H))
The truncation of the identity map is the identity map
id-map-trunc : {l1 : Level} {A : UU l1} (k : 𝕋) → map-trunc k (id {A = A}) ~ id id-map-trunc k = htpy-uniqueness-map-trunc k id id refl-htpy
The truncation of a composite is the composite of the truncations
preserves-comp-map-trunc : { l1 l2 l3 : Level} {A : UU l1} {B : UU l2} {C : UU l3} (k : 𝕋) ( g : B → C) (f : A → B) → ( map-trunc k (g ∘ f)) ~ ( (map-trunc k g) ∘ (map-trunc k f)) preserves-comp-map-trunc k g f = htpy-uniqueness-map-trunc k ( g ∘ f) ( map-trunc k g ∘ map-trunc k f) ( ( map-trunc k g ·l naturality-unit-trunc k f) ∙h ( naturality-unit-trunc k g ·r f))
The functorial action of truncations preserves equivalences
module _ {l1 l2 : Level} {A : UU l1} {B : UU l2} (k : 𝕋) (e : A ≃ B) where map-equiv-trunc : type-trunc k A → type-trunc k B map-equiv-trunc = map-trunc k (map-equiv e) map-inv-equiv-trunc : type-trunc k B → type-trunc k A map-inv-equiv-trunc = map-trunc k (map-inv-equiv e) is-equiv-map-equiv-trunc : is-equiv map-equiv-trunc is-equiv-map-equiv-trunc = is-equiv-is-invertible ( map-inv-equiv-trunc) ( inv-htpy ( preserves-comp-map-trunc k (map-equiv e) (map-inv-equiv e)) ∙h ( htpy-trunc (is-section-map-inv-equiv e) ∙h id-map-trunc k)) ( inv-htpy ( preserves-comp-map-trunc k (map-inv-equiv e) (map-equiv e)) ∙h ( htpy-trunc (is-retraction-map-inv-equiv e) ∙h id-map-trunc k)) equiv-trunc : (type-trunc k A ≃ type-trunc k B) pr1 equiv-trunc = map-equiv-trunc pr2 equiv-trunc = is-equiv-map-equiv-trunc
Truncations preserve retracts
module _ {l1 l2 : Level} {k : 𝕋} {A : UU l1} {B : UU l2} where section-map-trunc-section : (f : A → B) → section f → section (map-trunc k f) pr1 (section-map-trunc-section f S) = map-trunc k (map-section f S) pr2 (section-map-trunc-section f (s , h)) = homotopy-reasoning map-trunc k f ∘ map-trunc k s ~ map-trunc k (f ∘ s) by inv-htpy (preserves-comp-map-trunc k f s) ~ map-trunc k id by htpy-eq (ap (map-trunc k) (eq-htpy h)) ~ id by id-map-trunc k retraction-map-trunc-retraction : (f : A → B) → retraction f → retraction (map-trunc k f) pr1 (retraction-map-trunc-retraction f S) = map-trunc k (map-retraction f S) pr2 (retraction-map-trunc-retraction f (r , h)) = homotopy-reasoning map-trunc k r ∘ map-trunc k f ~ map-trunc k (r ∘ f) by inv-htpy (preserves-comp-map-trunc k r f) ~ map-trunc k id by htpy-eq (ap (map-trunc k) (eq-htpy h)) ~ id by id-map-trunc k retract-of-trunc-retract-of : A retract-of B → (type-trunc k A) retract-of (type-trunc k B) pr1 (retract-of-trunc-retract-of R) = map-trunc k (inclusion-retract R) pr2 (retract-of-trunc-retract-of R) = retraction-map-trunc-retraction ( inclusion-retract R) ( retraction-retract R)
Recent changes
- 2024-04-17. Fredrik Bakke. Splitting idempotents (#1105).
- 2024-02-06. Egbert Rijke and Fredrik Bakke. Refactor files about identity types and homotopies (#1014).
- 2023-12-21. Fredrik Bakke. Action on homotopies of functions (#973).
- 2023-11-27. Tom de Jong.
k
-acyclic types (#948). - 2023-11-01. Fredrik Bakke. Fun with functors (#886).