Nilpotent elements in semirings
Content created by Egbert Rijke, Fredrik Bakke and Maša Žaucer.
Created on 2023-03-18.
Last modified on 2024-04-11.
module ring-theory.nilpotent-elements-semirings where
Imports
open import elementary-number-theory.addition-natural-numbers open import elementary-number-theory.natural-numbers open import foundation.action-on-identifications-functions open import foundation.dependent-pair-types open import foundation.existential-quantification open import foundation.identity-types open import foundation.propositional-truncations open import foundation.propositions open import foundation.subtypes open import foundation.universe-levels open import ring-theory.binomial-theorem-semirings open import ring-theory.powers-of-elements-semirings open import ring-theory.semirings
Idea
A nilpotent element in a semiring is an element x
for which there is a natural
number n
such that x^n = 0
.
Definition
is-nilpotent-element-semiring-Prop : {l : Level} (R : Semiring l) → type-Semiring R → Prop l is-nilpotent-element-semiring-Prop R x = exists-structure-Prop ℕ (λ n → power-Semiring R n x = zero-Semiring R) is-nilpotent-element-Semiring : {l : Level} (R : Semiring l) → type-Semiring R → UU l is-nilpotent-element-Semiring R x = type-Prop (is-nilpotent-element-semiring-Prop R x) is-prop-is-nilpotent-element-Semiring : {l : Level} (R : Semiring l) (x : type-Semiring R) → is-prop (is-nilpotent-element-Semiring R x) is-prop-is-nilpotent-element-Semiring R x = is-prop-type-Prop (is-nilpotent-element-semiring-Prop R x)
Properties
Zero is nilpotent
is-nilpotent-zero-Semiring : {l : Level} (R : Semiring l) → is-nilpotent-element-Semiring R (zero-Semiring R) is-nilpotent-zero-Semiring R = intro-exists 1 refl
If x
and y
commute and are both nilpotent, then x + y
is nilpotent
is-nilpotent-add-Semiring : {l : Level} (R : Semiring l) → (x y : type-Semiring R) → (mul-Semiring R x y = mul-Semiring R y x) → is-nilpotent-element-Semiring R x → is-nilpotent-element-Semiring R y → is-nilpotent-element-Semiring R (add-Semiring R x y) is-nilpotent-add-Semiring R x y H f h = apply-universal-property-trunc-Prop f ( is-nilpotent-element-semiring-Prop R (add-Semiring R x y)) ( λ (n , p) → apply-universal-property-trunc-Prop h ( is-nilpotent-element-semiring-Prop R (add-Semiring R x y)) ( λ (m , q) → intro-exists ( n +ℕ m) ( ( is-linear-combination-power-add-Semiring R n m x y H) ∙ ( ( ap-add-Semiring R ( ( ap (mul-Semiring' R _) q) ∙ ( left-zero-law-mul-Semiring R _)) ( ( ap (mul-Semiring' R _) p) ∙ ( left-zero-law-mul-Semiring R _))) ∙ ( left-unit-law-add-Semiring R (zero-Semiring R))))))
If x
is nilpotent and y
commutes with x
, then xy
is also nilpotent
module _ {l : Level} (R : Semiring l) where is-nilpotent-element-mul-Semiring : (x y : type-Semiring R) → mul-Semiring R x y = mul-Semiring R y x → is-nilpotent-element-Semiring R x → is-nilpotent-element-Semiring R (mul-Semiring R x y) is-nilpotent-element-mul-Semiring x y H f = apply-universal-property-trunc-Prop f ( is-nilpotent-element-semiring-Prop R (mul-Semiring R x y)) ( λ (n , p) → intro-exists n ( ( distributive-power-mul-Semiring R n H) ∙ ( ( ap (mul-Semiring' R (power-Semiring R n y)) p) ∙ ( left-zero-law-mul-Semiring R ( power-Semiring R n y))))) is-nilpotent-element-mul-Semiring' : (x y : type-Semiring R) → mul-Semiring R x y = mul-Semiring R y x → is-nilpotent-element-Semiring R x → is-nilpotent-element-Semiring R (mul-Semiring R y x) is-nilpotent-element-mul-Semiring' x y H f = is-closed-under-eq-subtype ( is-nilpotent-element-semiring-Prop R) ( is-nilpotent-element-mul-Semiring x y H f) ( H)
Recent changes
- 2024-04-11. Fredrik Bakke and Egbert Rijke. Propositional operations (#1008).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-05-13. Fredrik Bakke. Refactor to use infix binary operators for arithmetic (#620).
- 2023-03-21. Fredrik Bakke. Formatting fixes (#530).
- 2023-03-19. Egbert Rijke. Refactoring ideals in semirings, rings, commutative semirings, and commutative rings; refactoring a corollary of the binomial theorem; constructing the nilradical of an ideal in a commutative ring (#525).