Opposite large posets
Content created by Fredrik Bakke.
Created on 2024-11-20.
Last modified on 2024-11-20.
module order-theory.opposite-large-posets where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.homotopies open import foundation.identity-types open import foundation.large-identity-types open import foundation.propositions open import foundation.sets open import foundation.universe-levels open import order-theory.large-posets open import order-theory.large-preorders open import order-theory.opposite-large-preorders open import order-theory.order-preserving-maps-large-posets
Idea
Let X
be a large poset, its
opposite¶
Xᵒᵖ
is given by reversing the relation.
Definition
The opposite large poset
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) where large-preorder-opposite-Large-Poset : Large-Preorder α (λ l1 l2 → β l2 l1) large-preorder-opposite-Large-Poset = opposite-Large-Preorder (large-preorder-Large-Poset P) type-opposite-Large-Poset : (l : Level) → UU (α l) type-opposite-Large-Poset = type-Large-Preorder large-preorder-opposite-Large-Poset leq-prop-opposite-Large-Poset : {l1 l2 : Level} (X : type-opposite-Large-Poset l1) (Y : type-opposite-Large-Poset l2) → Prop (β l2 l1) leq-prop-opposite-Large-Poset = leq-prop-Large-Preorder large-preorder-opposite-Large-Poset leq-opposite-Large-Poset : {l1 l2 : Level} (X : type-opposite-Large-Poset l1) (Y : type-opposite-Large-Poset l2) → UU (β l2 l1) leq-opposite-Large-Poset = leq-Large-Preorder large-preorder-opposite-Large-Poset transitive-leq-opposite-Large-Poset : {l1 l2 l3 : Level} (X : type-opposite-Large-Poset l1) (Y : type-opposite-Large-Poset l2) (Z : type-opposite-Large-Poset l3) → leq-opposite-Large-Poset Y Z → leq-opposite-Large-Poset X Y → leq-opposite-Large-Poset X Z transitive-leq-opposite-Large-Poset = transitive-leq-Large-Preorder large-preorder-opposite-Large-Poset refl-leq-opposite-Large-Poset : {l1 : Level} (X : type-opposite-Large-Poset l1) → leq-opposite-Large-Poset X X refl-leq-opposite-Large-Poset = refl-leq-Large-Preorder large-preorder-opposite-Large-Poset antisymmetric-leq-opposite-Large-Poset : {l1 : Level} (X Y : type-opposite-Large-Poset l1) → leq-opposite-Large-Poset X Y → leq-opposite-Large-Poset Y X → X = Y antisymmetric-leq-opposite-Large-Poset X Y p q = antisymmetric-leq-Large-Poset P X Y q p opposite-Large-Poset : Large-Poset α (λ l1 l2 → β l2 l1) opposite-Large-Poset = make-Large-Poset large-preorder-opposite-Large-Poset antisymmetric-leq-opposite-Large-Poset
The opposite functorial action on order preserving maps of large posets
module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} {γ : Level → Level} {P : Large-Poset αP βP} {Q : Large-Poset αQ βQ} where opposite-hom-Large-Poset : hom-Large-Poset γ P Q → hom-Large-Poset γ (opposite-Large-Poset P) (opposite-Large-Poset Q) opposite-hom-Large-Poset = opposite-hom-Large-Preorder
Properties
The opposite large poset construction is a strict involution
module _ {α : Level → Level} {β : Level → Level → Level} (P : Large-Poset α β) where is-involution-opposite-Large-Poset : opposite-Large-Poset (opposite-Large-Poset P) =ω P is-involution-opposite-Large-Poset = reflω module _ {αP αQ : Level → Level} {βP βQ : Level → Level → Level} {γ : Level → Level} (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ) (f : hom-Large-Poset γ P Q) where is-involution-opposite-hom-Large-Poset : opposite-hom-Large-Poset { P = opposite-Large-Poset P} { opposite-Large-Poset Q} ( opposite-hom-Large-Poset {P = P} {Q} f) =ω f is-involution-opposite-hom-Large-Poset = reflω
Recent changes
- 2024-11-20. Fredrik Bakke. Two fixed point theorems (#1227).