Opposite large posets

Content created by Fredrik Bakke.

Created on 2024-11-20.
Last modified on 2024-11-20.

module order-theory.opposite-large-posets where
Imports
open import foundation.dependent-pair-types
open import foundation.equivalences
open import foundation.homotopies
open import foundation.identity-types
open import foundation.large-identity-types
open import foundation.propositions
open import foundation.sets
open import foundation.universe-levels

open import order-theory.large-posets
open import order-theory.large-preorders
open import order-theory.opposite-large-preorders
open import order-theory.order-preserving-maps-large-posets

Idea

Let X be a large poset, its opposite Xᵒᵖ is given by reversing the relation.

Definition

The opposite large poset

module _
  {α : Level  Level} {β : Level  Level  Level} (P : Large-Poset α β)
  where

  large-preorder-opposite-Large-Poset :
    Large-Preorder α  l1 l2  β l2 l1)
  large-preorder-opposite-Large-Poset =
    opposite-Large-Preorder (large-preorder-Large-Poset P)

  type-opposite-Large-Poset : (l : Level)  UU (α l)
  type-opposite-Large-Poset =
    type-Large-Preorder large-preorder-opposite-Large-Poset

  leq-prop-opposite-Large-Poset :
    {l1 l2 : Level}
    (X : type-opposite-Large-Poset l1)
    (Y : type-opposite-Large-Poset l2)  Prop (β l2 l1)
  leq-prop-opposite-Large-Poset =
    leq-prop-Large-Preorder large-preorder-opposite-Large-Poset

  leq-opposite-Large-Poset :
    {l1 l2 : Level}
    (X : type-opposite-Large-Poset l1)
    (Y : type-opposite-Large-Poset l2)  UU (β l2 l1)
  leq-opposite-Large-Poset =
    leq-Large-Preorder large-preorder-opposite-Large-Poset

  transitive-leq-opposite-Large-Poset :
    {l1 l2 l3 : Level}
    (X : type-opposite-Large-Poset l1)
    (Y : type-opposite-Large-Poset l2)
    (Z : type-opposite-Large-Poset l3) 
    leq-opposite-Large-Poset Y Z 
    leq-opposite-Large-Poset X Y 
    leq-opposite-Large-Poset X Z
  transitive-leq-opposite-Large-Poset =
    transitive-leq-Large-Preorder large-preorder-opposite-Large-Poset

  refl-leq-opposite-Large-Poset :
    {l1 : Level} (X : type-opposite-Large-Poset l1) 
    leq-opposite-Large-Poset X X
  refl-leq-opposite-Large-Poset =
    refl-leq-Large-Preorder large-preorder-opposite-Large-Poset

  antisymmetric-leq-opposite-Large-Poset :
    {l1 : Level} (X Y : type-opposite-Large-Poset l1) 
    leq-opposite-Large-Poset X Y 
    leq-opposite-Large-Poset Y X 
    X  Y
  antisymmetric-leq-opposite-Large-Poset X Y p q =
    antisymmetric-leq-Large-Poset P X Y q p

  opposite-Large-Poset : Large-Poset α  l1 l2  β l2 l1)
  opposite-Large-Poset =
    make-Large-Poset
      large-preorder-opposite-Large-Poset
      antisymmetric-leq-opposite-Large-Poset

The opposite functorial action on order preserving maps of large posets

module _
  {αP αQ : Level  Level} {βP βQ : Level  Level  Level} {γ : Level  Level}
  {P : Large-Poset αP βP} {Q : Large-Poset αQ βQ}
  where

  opposite-hom-Large-Poset :
    hom-Large-Poset γ P Q 
    hom-Large-Poset γ (opposite-Large-Poset P) (opposite-Large-Poset Q)
  opposite-hom-Large-Poset = opposite-hom-Large-Preorder

Properties

The opposite large poset construction is a strict involution

module _
  {α : Level  Level} {β : Level  Level  Level} (P : Large-Poset α β)
  where

  is-involution-opposite-Large-Poset :
    opposite-Large-Poset (opposite-Large-Poset P) =ω P
  is-involution-opposite-Large-Poset = reflω

module _
  {αP αQ : Level  Level} {βP βQ : Level  Level  Level} {γ : Level  Level}
  (P : Large-Poset αP βP) (Q : Large-Poset αQ βQ)
  (f : hom-Large-Poset γ P Q)
  where

  is-involution-opposite-hom-Large-Poset :
    opposite-hom-Large-Poset
      { P = opposite-Large-Poset P}
      { opposite-Large-Poset Q}
      ( opposite-hom-Large-Poset {P = P} {Q} f) =ω
    f
  is-involution-opposite-hom-Large-Poset = reflω

Recent changes