Modal operators
Content created by Fredrik Bakke, Egbert Rijke and Jonathan Prieto-Cubides.
Created on 2023-03-09.
Last modified on 2024-03-12.
module orthogonal-factorization-systems.modal-operators where
Imports
open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.propositions open import foundation.small-types open import foundation.subuniverses open import foundation.universe-levels
Idea
Underlying every modality is a modal operator, which is an operation on
types that construct new types. For a monadic modality ○
, there is moreover
a modal unit that compares every type X
to its modal type ○ X
(X → ○ X
).
Definitions
Modal operators
operator-modality : (l1 l2 : Level) → UU (lsuc l1 ⊔ lsuc l2) operator-modality l1 l2 = UU l1 → UU l2
Modal units
unit-modality : {l1 l2 : Level} → operator-modality l1 l2 → UU (lsuc l1 ⊔ l2) unit-modality {l1} ○ = {X : UU l1} → X → ○ X
The subuniverse of modal types
module _ {l1 l2 : Level} {○ : operator-modality l1 l2} (unit-○ : unit-modality ○) where is-modal : (X : UU l1) → UU (l1 ⊔ l2) is-modal X = is-equiv (unit-○ {X}) is-modal-family : {l3 : Level} {X : UU l3} (P : X → UU l1) → UU (l1 ⊔ l2 ⊔ l3) is-modal-family {X = X} P = (x : X) → is-modal (P x) modal-type : UU (lsuc l1 ⊔ l2) modal-type = Σ (UU l1) (is-modal) is-modal-Prop : (X : UU l1) → Prop (l1 ⊔ l2) is-modal-Prop X = is-equiv-Prop (unit-○ {X}) is-property-is-modal : (X : UU l1) → is-prop (is-modal X) is-property-is-modal X = is-prop-type-Prop (is-modal-Prop X) is-subuniverse-is-modal : is-subuniverse is-modal is-subuniverse-is-modal = is-property-is-modal modal-type-subuniverse : subuniverse l1 (l1 ⊔ l2) modal-type-subuniverse = is-modal-Prop
Modal small types
A small type is said to be modal if its small equivalent is modal.
is-modal-type-is-small : {l1 l2 l3 : Level} {○ : operator-modality l1 l2} (unit-○ : unit-modality ○) (X : UU l3) (is-small-X : is-small l1 X) → UU (l1 ⊔ l2) is-modal-type-is-small unit-○ X is-small-X = is-modal unit-○ (type-is-small is-small-X) module _ {l1 l2 l3 : Level} {○ : operator-modality l1 l2} (unit-○ : unit-modality ○) (X : UU l3) (is-small-X : is-small l1 X) where is-equiv-unit-is-modal-type-is-small : is-modal-type-is-small unit-○ X is-small-X → is-equiv (unit-○ ∘ map-equiv-is-small is-small-X) is-equiv-unit-is-modal-type-is-small = is-equiv-comp ( unit-○) ( map-equiv-is-small is-small-X) ( is-equiv-map-equiv (equiv-is-small is-small-X)) equiv-unit-is-modal-type-is-small : is-modal-type-is-small unit-○ X is-small-X → X ≃ ○ (type-is-small is-small-X) pr1 (equiv-unit-is-modal-type-is-small m) = unit-○ ∘ map-equiv-is-small is-small-X pr2 (equiv-unit-is-modal-type-is-small m) = is-equiv-unit-is-modal-type-is-small m map-inv-unit-is-modal-type-is-small : is-modal-type-is-small unit-○ X is-small-X → ○ (type-is-small is-small-X) → X map-inv-unit-is-modal-type-is-small = map-inv-equiv ∘ equiv-unit-is-modal-type-is-small module _ {l1 l2 : Level} (l3 : Level) {○ : operator-modality l1 l2} (unit-○ : unit-modality ○) (X : Small-Type l1 l3) where is-modal-Small-Type : UU (l1 ⊔ l2) is-modal-Small-Type = is-modal-type-is-small unit-○ ( type-Small-Type X) ( is-small-type-Small-Type X) is-equiv-unit-is-modal-Small-Type : is-modal-Small-Type → is-equiv (unit-○ ∘ map-equiv (equiv-is-small-type-Small-Type X)) is-equiv-unit-is-modal-Small-Type = is-equiv-unit-is-modal-type-is-small unit-○ ( type-Small-Type X) ( is-small-type-Small-Type X) equiv-unit-is-modal-Small-Type : is-modal-Small-Type → type-Small-Type X ≃ ○ (small-type-Small-Type X) equiv-unit-is-modal-Small-Type = equiv-unit-is-modal-type-is-small unit-○ ( type-Small-Type X) ( is-small-type-Small-Type X) map-inv-unit-is-modal-Small-Type : is-modal-Small-Type → ○ (small-type-Small-Type X) → type-Small-Type X map-inv-unit-is-modal-Small-Type = map-inv-equiv ∘ equiv-unit-is-modal-Small-Type
References
- [RSS20]
- Egbert Rijke, Michael Shulman, and Bas Spitters. Modalities in homotopy type theory. Logical Methods in Computer Science, 01 2020. URL: https://lmcs.episciences.org/6015, arXiv:1706.07526, doi:10.23638/LMCS-16(1:2)2020.
Recent changes
- 2024-03-12. Fredrik Bakke. Bibliographies (#1058).
- 2023-11-24. Fredrik Bakke. Modal type theory (#701).
- 2023-11-01. Fredrik Bakke. Opposite categories, gaunt categories, replete subprecategories, large Yoneda, and miscellaneous additions (#880).
- 2023-09-15. Egbert Rijke. update contributors, remove unused imports (#772).
- 2023-06-28. Fredrik Bakke. Localizations and other things (#655).