Strictly increasing sequences in strictly preordered sets
Content created by malarbol.
Created on 2025-04-22.
Last modified on 2025-04-22.
module order-theory.strictly-increasing-sequences-strictly-preordered-sets where
Imports
open import elementary-number-theory.decidable-total-order-natural-numbers open import elementary-number-theory.inequality-natural-numbers open import elementary-number-theory.natural-numbers open import elementary-number-theory.strict-inequality-natural-numbers open import foundation.dependent-pair-types open import foundation.function-types open import foundation.identity-types open import foundation.propositions open import foundation.sequences open import foundation.universe-levels open import order-theory.sequences-strictly-preordered-sets open import order-theory.strict-order-preserving-maps open import order-theory.strictly-preordered-sets
Idea
A sequence in a strictly preordered set is called strictly increasing¶ if it preserves the strict ordering on the natural numbers.
Definitions
Strictly increasing sequences in strictly preordered sets
module _ {l1 l2 : Level} (A : Strictly-Preordered-Set l1 l2) (u : type-sequence-Strictly-Preordered-Set A) where is-strictly-increasing-prop-sequence-Strictly-Preordered-Set : Prop l2 is-strictly-increasing-prop-sequence-Strictly-Preordered-Set = preserves-strict-order-prop-map-Strictly-Preordered-Set strictly-preordered-set-ℕ A u is-strictly-increasing-sequence-Strictly-Preordered-Set : UU l2 is-strictly-increasing-sequence-Strictly-Preordered-Set = preserves-strict-order-map-Strictly-Preordered-Set strictly-preordered-set-ℕ A u is-prop-is-strictly-increasing-sequence-Strictly-Preordered-Set : is-prop is-strictly-increasing-sequence-Strictly-Preordered-Set is-prop-is-strictly-increasing-sequence-Strictly-Preordered-Set = is-prop-preserves-strict-order-map-Strictly-Preordered-Set strictly-preordered-set-ℕ A u
Properties
A sequence u
in a strictly preordered set is strictly increasing if and only if uₙ < uₙ₊₁
for all n : ℕ
module _ {l1 l2 : Level} (A : Strictly-Preordered-Set l1 l2) where is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set : (u : type-sequence-Strictly-Preordered-Set A) → ((n : ℕ) → le-Strictly-Preordered-Set A (u n) (u (succ-ℕ n))) → is-strictly-increasing-sequence-Strictly-Preordered-Set A u is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set u H zero-ℕ (succ-ℕ zero-ℕ) I = H zero-ℕ is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set u H zero-ℕ (succ-ℕ (succ-ℕ n)) I = is-transitive-le-Strictly-Preordered-Set A ( u zero-ℕ) ( u (succ-ℕ n)) ( u (succ-ℕ (succ-ℕ n))) ( H (succ-ℕ n)) ( is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set ( u) ( H) ( zero-ℕ) ( succ-ℕ n) ( I)) is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set u H (succ-ℕ m) (succ-ℕ n) I = is-strictly-increasing-le-succ-sequence-Strictly-Preordered-Set ( u ∘ succ-ℕ) ( H ∘ succ-ℕ) ( m) ( n) ( I) le-succ-is-strictly-increasing-sequence-Strictly-Preordered-Set : (u : type-sequence-Strictly-Preordered-Set A) → is-strictly-increasing-sequence-Strictly-Preordered-Set A u → ((n : ℕ) → le-Strictly-Preordered-Set A (u n) (u (succ-ℕ n))) le-succ-is-strictly-increasing-sequence-Strictly-Preordered-Set u H n = H n (succ-ℕ n) (succ-le-ℕ n)
Recent changes
- 2025-04-22. malarbol. Monotonic sequences in posets (#1388).