Spans of closed intervals in total orders
Content created by Louis Wasserman.
Created on 2025-10-04.
Last modified on 2025-10-04.
module order-theory.spans-closed-intervals-total-orders where
Imports
open import foundation.dependent-pair-types open import foundation.universe-levels open import order-theory.closed-intervals-total-orders open import order-theory.join-semilattices open import order-theory.least-upper-bounds-posets open import order-theory.poset-closed-intervals-total-orders open import order-theory.total-orders
Idea
The span¶ of two closed intervals in a total order is the smallest interval which contains both intervals, or in other words, their least upper bound in the poset of the containment relation.
Definition
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where span-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → closed-interval-Total-Order T span-closed-interval-Total-Order ((a , b) , a≤b) ((c , d) , c≤d) = ( (min-Total-Order T a c , max-Total-Order T b d) , transitive-leq-Total-Order T _ a _ ( transitive-leq-Total-Order T a b _ ( leq-left-max-Total-Order T b d) ( a≤b)) ( leq-left-min-Total-Order T a c))
Properties
The span of two closed intervals is their least upper bound
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where abstract is-least-binary-upper-bound-span-closed-interval-Total-Order : ([a,b] [c,d] : closed-interval-Total-Order T) → is-least-binary-upper-bound-Poset ( poset-closed-interval-Total-Order T) ( [a,b]) ( [c,d]) ( span-closed-interval-Total-Order T [a,b] [c,d]) pr1 ( is-least-binary-upper-bound-span-closed-interval-Total-Order ((a , b) , a≤b) ((c , d) , c≤d) ((e , f) , e≤f)) ( (e≤a , b≤f) , (e≤c , d≤f)) = ( leq-min-leq-both-Total-Order T e a c e≤a e≤c , leq-max-leq-both-Total-Order T b d f b≤f d≤f) pr2 ( is-least-binary-upper-bound-span-closed-interval-Total-Order ((a , b) , a≤b) ((c , d) , c≤d) ((e , f) , e≤f)) ( e≤minac , maxbd≤f) = ( ( transitive-leq-Total-Order T e _ a ( leq-left-min-Total-Order T a c) ( e≤minac) , transitive-leq-Total-Order T b _ f ( maxbd≤f) ( leq-left-max-Total-Order T b d)) , ( transitive-leq-Total-Order T e _ c ( leq-right-min-Total-Order T a c) ( e≤minac) , transitive-leq-Total-Order T d _ f ( maxbd≤f) ( leq-right-max-Total-Order T b d)))
The join semilattice of closed intervals
module _ {l1 l2 : Level} (T : Total-Order l1 l2) where is-join-semilattice-closed-interval-Total-Order : is-join-semilattice-Poset (poset-closed-interval-Total-Order T) is-join-semilattice-closed-interval-Total-Order [a,b] [c,d] = ( span-closed-interval-Total-Order T [a,b] [c,d] , is-least-binary-upper-bound-span-closed-interval-Total-Order T ( [a,b]) ( [c,d])) order-theoretic-join-semilattice-closed-interval-Total-Order : Order-Theoretic-Join-Semilattice (l1 ⊔ l2) l2 order-theoretic-join-semilattice-closed-interval-Total-Order = ( poset-closed-interval-Total-Order T , is-join-semilattice-closed-interval-Total-Order)
Recent changes
- 2025-10-04. Louis Wasserman. Poset of closed intervals (#1563).