Addition of linear maps between left modules over rings
Content created by Louis Wasserman.
Created on 2026-01-30.
Last modified on 2026-01-30.
module linear-algebra.addition-linear-maps-left-modules-rings where
Imports
open import foundation.action-on-identifications-binary-functions open import foundation.dependent-pair-types open import foundation.identity-types open import foundation.universe-levels open import group-theory.abelian-groups open import group-theory.function-abelian-groups open import group-theory.subgroups-abelian-groups open import linear-algebra.left-modules-rings open import linear-algebra.linear-maps-left-modules-rings open import linear-algebra.negation-linear-maps-left-modules-rings open import ring-theory.rings
Idea
Given two linear maps f
and g from a left module M over a
ring R to a left module N over R, then the map
x ↦ f x + g x is a linear map.
Definition
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) (f g : linear-map-left-module-Ring R M N) where map-add-linear-map-left-module-Ring : type-left-module-Ring R M → type-left-module-Ring R N map-add-linear-map-left-module-Ring x = add-left-module-Ring R N ( map-linear-map-left-module-Ring R M N f x) ( map-linear-map-left-module-Ring R M N g x) abstract is-additive-map-add-linear-map-left-module-Ring : is-additive-map-left-module-Ring R M N map-add-linear-map-left-module-Ring is-additive-map-add-linear-map-left-module-Ring x y = ( ap-binary ( add-left-module-Ring R N) ( is-additive-map-linear-map-left-module-Ring R M N f x y) ( is-additive-map-linear-map-left-module-Ring R M N g x y)) ∙ ( interchange-add-add-left-module-Ring R N _ _ _ _) is-homogeneous-map-add-linear-map-left-module-Ring : is-homogeneous-map-left-module-Ring R M N ( map-add-linear-map-left-module-Ring) is-homogeneous-map-add-linear-map-left-module-Ring c x = ( ap-binary ( add-left-module-Ring R N) ( is-homogeneous-map-linear-map-left-module-Ring R M N f c x) ( is-homogeneous-map-linear-map-left-module-Ring R M N g c x)) ∙ ( inv (left-distributive-mul-add-left-module-Ring R N c _ _)) is-linear-map-add-linear-map-left-module-Ring : is-linear-map-left-module-Ring R M N map-add-linear-map-left-module-Ring is-linear-map-add-linear-map-left-module-Ring = ( is-additive-map-add-linear-map-left-module-Ring , is-homogeneous-map-add-linear-map-left-module-Ring) add-linear-map-left-module-Ring : linear-map-left-module-Ring R M N add-linear-map-left-module-Ring = ( map-add-linear-map-left-module-Ring , is-linear-map-add-linear-map-left-module-Ring)
Properties
Linear maps form an Abelian group under addition and negation
module _ {l1 l2 l3 : Level} (R : Ring l1) (M : left-module-Ring l2 R) (N : left-module-Ring l3 R) where subgroup-add-linear-map-left-module-Ring : Subgroup-Ab ( l1 ⊔ l2 ⊔ l3) ( function-Ab (ab-left-module-Ring R N) (type-left-module-Ring R M)) subgroup-add-linear-map-left-module-Ring = ( is-linear-map-prop-left-module-Ring R M N , is-linear-const-zero-map-left-module-Ring R M N , ( λ {f} {g} is-linear-f is-linear-g → is-linear-map-add-linear-map-left-module-Ring R M N ( f , is-linear-f) ( g , is-linear-g)) , ( λ {f} is-linear-f → is-linear-neg-map-linear-map-left-module-Ring R M N (f , is-linear-f))) ab-add-linear-map-left-module-Ring : Ab (l1 ⊔ l2 ⊔ l3) ab-add-linear-map-left-module-Ring = ab-Subgroup-Ab ( function-Ab (ab-left-module-Ring R N) (type-left-module-Ring R M)) ( subgroup-add-linear-map-left-module-Ring)
Recent changes
- 2026-01-30. Louis Wasserman. Linear algebra concepts (#1764).