Wide subcategories
Content created by Fredrik Bakke and Egbert Rijke.
Created on 2023-11-01.
Last modified on 2024-03-11.
module category-theory.wide-subcategories where
Imports
open import category-theory.categories open import category-theory.composition-operations-on-binary-families-of-sets open import category-theory.faithful-functors-precategories open import category-theory.functors-categories open import category-theory.isomorphisms-in-categories open import category-theory.isomorphisms-in-precategories open import category-theory.maps-categories open import category-theory.precategories open import category-theory.subcategories open import category-theory.wide-subprecategories open import foundation.contractible-types open import foundation.dependent-pair-types open import foundation.equivalences open import foundation.function-types open import foundation.functoriality-dependent-pair-types open import foundation.fundamental-theorem-of-identity-types open import foundation.identity-types open import foundation.iterated-dependent-product-types open import foundation.propositions open import foundation.sets open import foundation.strictly-involutive-identity-types open import foundation.subtypes open import foundation.unit-type open import foundation.universe-levels
Idea
A wide subcategory of a category C
is a
subcategory that contains all the objects of
C
.
Lemma
Wide subprecategories of categories are categories
module _ {l1 l2 l3 : Level} (C : Precategory l1 l2) (P : Wide-Subprecategory l3 C) (is-category-C : is-category-Precategory C) where is-category-is-category-Wide-Subprecategory : is-category-Precategory (precategory-Wide-Subprecategory C P) is-category-is-category-Wide-Subprecategory x = fundamental-theorem-id ( is-contr-equiv _ ( equiv-tot ( λ y → inv-compute-iso-Subcategory ( C , is-category-C) ( subprecategory-Wide-Subprecategory C P))) ( is-torsorial-iso-Category (C , is-category-C) x)) ( iso-eq-Precategory (precategory-Wide-Subprecategory C P) x)
Definitions
The predicate of being a wide subcategory
module _ {l1 l2 l3 l4 : Level} (C : Category l1 l2) (P : Subcategory l3 l4 C) where is-wide-prop-Subcategory : Prop (l1 ⊔ l3) is-wide-prop-Subcategory = is-wide-prop-Subprecategory (precategory-Category C) P is-wide-Subcategory : UU (l1 ⊔ l3) is-wide-Subcategory = type-Prop is-wide-prop-Subcategory is-prop-is-wide-Subcategory : is-prop (is-wide-Subcategory) is-prop-is-wide-Subcategory = is-prop-type-Prop is-wide-prop-Subcategory
wide sub-hom-families of categories
module _ {l1 l2 : Level} (l3 : Level) (C : Category l1 l2) where subtype-hom-wide-Category : UU (l1 ⊔ l2 ⊔ lsuc l3) subtype-hom-wide-Category = (x y : obj-Category C) → subtype l3 (hom-Category C x y)
Categorical predicates on wide sub-hom-families
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (P₁ : subtype-hom-wide-Category l3 C) where contains-id-prop-subtype-hom-wide-Category : Prop (l1 ⊔ l3) contains-id-prop-subtype-hom-wide-Category = Π-Prop (obj-Category C) (λ x → P₁ x x (id-hom-Category C)) contains-id-subtype-hom-wide-Category : UU (l1 ⊔ l3) contains-id-subtype-hom-wide-Category = type-Prop contains-id-prop-subtype-hom-wide-Category is-prop-contains-id-subtype-hom-wide-Category : is-prop contains-id-subtype-hom-wide-Category is-prop-contains-id-subtype-hom-wide-Category = is-prop-type-Prop contains-id-prop-subtype-hom-wide-Category is-closed-under-composition-subtype-hom-wide-Category : UU (l1 ⊔ l2 ⊔ l3) is-closed-under-composition-subtype-hom-wide-Category = (x y z : obj-Category C) → (g : hom-Category C y z) → (f : hom-Category C x y) → is-in-subtype (P₁ y z) g → is-in-subtype (P₁ x y) f → is-in-subtype (P₁ x z) (comp-hom-Category C g f) is-prop-is-closed-under-composition-subtype-hom-wide-Category : is-prop is-closed-under-composition-subtype-hom-wide-Category is-prop-is-closed-under-composition-subtype-hom-wide-Category = is-prop-iterated-Π 7 ( λ x y z g f _ _ → is-prop-is-in-subtype (P₁ x z) (comp-hom-Category C g f)) is-closed-under-composition-prop-subtype-hom-wide-Category : Prop (l1 ⊔ l2 ⊔ l3) pr1 is-closed-under-composition-prop-subtype-hom-wide-Category = is-closed-under-composition-subtype-hom-wide-Category pr2 is-closed-under-composition-prop-subtype-hom-wide-Category = is-prop-is-closed-under-composition-subtype-hom-wide-Category
The predicate on subtypes of hom-sets of being a wide subcategory
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (P₁ : subtype-hom-wide-Category l3 C) where is-wide-subcategory-Prop : Prop (l1 ⊔ l2 ⊔ l3) is-wide-subcategory-Prop = product-Prop ( contains-id-prop-subtype-hom-wide-Category C P₁) ( is-closed-under-composition-prop-subtype-hom-wide-Category C P₁) is-wide-subcategory : UU (l1 ⊔ l2 ⊔ l3) is-wide-subcategory = type-Prop is-wide-subcategory-Prop is-prop-is-wide-subcategory : is-prop (is-wide-subcategory) is-prop-is-wide-subcategory = is-prop-type-Prop is-wide-subcategory-Prop contains-id-is-wide-subcategory : is-wide-subcategory → contains-id-subtype-hom-wide-Category C P₁ contains-id-is-wide-subcategory = pr1 is-closed-under-composition-is-wide-subcategory : is-wide-subcategory → is-closed-under-composition-subtype-hom-wide-Category C P₁ is-closed-under-composition-is-wide-subcategory = pr2
Wide subcategories
Wide-Subcategory : {l1 l2 : Level} (l3 : Level) (C : Category l1 l2) → UU (l1 ⊔ l2 ⊔ lsuc l3) Wide-Subcategory l3 C = Σ (subtype-hom-wide-Category l3 C) (is-wide-subcategory C)
Objects in wide subcategories
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (P : Wide-Subcategory l3 C) where subtype-obj-Wide-Subcategory : subtype lzero (obj-Category C) subtype-obj-Wide-Subcategory _ = unit-Prop obj-Wide-Subcategory : UU l1 obj-Wide-Subcategory = obj-Category C inclusion-obj-Wide-Subcategory : obj-Wide-Subcategory → obj-Category C inclusion-obj-Wide-Subcategory = id
Morphisms in wide subcategories
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (P : Wide-Subcategory l3 C) where subtype-hom-Wide-Subcategory : subtype-hom-wide-Category l3 C subtype-hom-Wide-Subcategory = pr1 P hom-Wide-Subcategory : (x y : obj-Wide-Subcategory C P) → UU (l2 ⊔ l3) hom-Wide-Subcategory x y = type-subtype (subtype-hom-Wide-Subcategory x y) inclusion-hom-Wide-Subcategory : (x y : obj-Wide-Subcategory C P) → hom-Wide-Subcategory x y → hom-Category C ( inclusion-obj-Wide-Subcategory C P x) ( inclusion-obj-Wide-Subcategory C P y) inclusion-hom-Wide-Subcategory x y = inclusion-subtype (subtype-hom-Wide-Subcategory x y)
The predicate on morphisms between any objects of being contained in the wide subcategory:
is-in-hom-Wide-Subcategory : (x y : obj-Category C) (f : hom-Category C x y) → UU l3 is-in-hom-Wide-Subcategory x y = is-in-subtype (subtype-hom-Wide-Subcategory x y) is-prop-is-in-hom-Wide-Subcategory : (x y : obj-Category C) (f : hom-Category C x y) → is-prop (is-in-hom-Wide-Subcategory x y f) is-prop-is-in-hom-Wide-Subcategory x y = is-prop-is-in-subtype (subtype-hom-Wide-Subcategory x y) is-in-hom-inclusion-hom-Wide-Subcategory : (x y : obj-Wide-Subcategory C P) (f : hom-Wide-Subcategory x y) → is-in-hom-Wide-Subcategory ( inclusion-obj-Wide-Subcategory C P x) ( inclusion-obj-Wide-Subcategory C P y) ( inclusion-hom-Wide-Subcategory x y f) is-in-hom-inclusion-hom-Wide-Subcategory x y = is-in-subtype-inclusion-subtype (subtype-hom-Wide-Subcategory x y)
Wide subcategories are wide subcategories:
is-wide-subcategory-Wide-Subcategory : is-wide-subcategory C subtype-hom-Wide-Subcategory is-wide-subcategory-Wide-Subcategory = pr2 P contains-id-Wide-Subcategory : contains-id-subtype-hom-wide-Category C ( subtype-hom-Wide-Subcategory) contains-id-Wide-Subcategory = contains-id-is-wide-subcategory C ( subtype-hom-Wide-Subcategory) ( is-wide-subcategory-Wide-Subcategory) is-closed-under-composition-Wide-Subcategory : is-closed-under-composition-subtype-hom-wide-Category C ( subtype-hom-Wide-Subcategory) is-closed-under-composition-Wide-Subcategory = is-closed-under-composition-is-wide-subcategory C ( subtype-hom-Wide-Subcategory) ( is-wide-subcategory-Wide-Subcategory)
Wide subcategories are subcategories:
subtype-hom-subcategory-Wide-Subcategory : subtype-hom-Category l3 C (subtype-obj-Wide-Subcategory C P) subtype-hom-subcategory-Wide-Subcategory = subtype-hom-subprecategory-Wide-Subprecategory (precategory-Category C) P is-subcategory-Wide-Subcategory : is-subcategory C ( subtype-obj-Wide-Subcategory C P) ( subtype-hom-subcategory-Wide-Subcategory) is-subcategory-Wide-Subcategory = is-subprecategory-Wide-Subprecategory (precategory-Category C) P subcategory-Wide-Subcategory : Subcategory lzero l3 C subcategory-Wide-Subcategory = subprecategory-Wide-Subprecategory (precategory-Category C) P is-wide-Wide-Subcategory : is-wide-Subcategory C (subcategory-Wide-Subcategory) is-wide-Wide-Subcategory = is-wide-Wide-Subprecategory (precategory-Category C) P
The underlying category of a wide subcategory
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (P : Wide-Subcategory l3 C) where hom-set-Wide-Subcategory : (x y : obj-Wide-Subcategory C P) → Set (l2 ⊔ l3) hom-set-Wide-Subcategory = hom-set-Wide-Subprecategory (precategory-Category C) P is-set-hom-Wide-Subcategory : (x y : obj-Wide-Subcategory C P) → is-set (hom-Wide-Subcategory C P x y) is-set-hom-Wide-Subcategory = is-set-hom-Wide-Subprecategory (precategory-Category C) P id-hom-Wide-Subcategory : {x : obj-Wide-Subcategory C P} → hom-Wide-Subcategory C P x x id-hom-Wide-Subcategory = id-hom-Wide-Subprecategory (precategory-Category C) P comp-hom-Wide-Subcategory : {x y z : obj-Wide-Subcategory C P} → hom-Wide-Subcategory C P y z → hom-Wide-Subcategory C P x y → hom-Wide-Subcategory C P x z comp-hom-Wide-Subcategory = comp-hom-Wide-Subprecategory (precategory-Category C) P associative-comp-hom-Wide-Subcategory : {x y z w : obj-Wide-Subcategory C P} (h : hom-Wide-Subcategory C P z w) (g : hom-Wide-Subcategory C P y z) (f : hom-Wide-Subcategory C P x y) → comp-hom-Wide-Subcategory (comp-hom-Wide-Subcategory h g) f = comp-hom-Wide-Subcategory h (comp-hom-Wide-Subcategory g f) associative-comp-hom-Wide-Subcategory = associative-comp-hom-Wide-Subprecategory (precategory-Category C) P involutive-eq-associative-comp-hom-Wide-Subcategory : {x y z w : obj-Wide-Subcategory C P} (h : hom-Wide-Subcategory C P z w) (g : hom-Wide-Subcategory C P y z) (f : hom-Wide-Subcategory C P x y) → comp-hom-Wide-Subcategory (comp-hom-Wide-Subcategory h g) f =ⁱ comp-hom-Wide-Subcategory h (comp-hom-Wide-Subcategory g f) involutive-eq-associative-comp-hom-Wide-Subcategory = involutive-eq-associative-comp-hom-Wide-Subprecategory ( precategory-Category C) ( P) left-unit-law-comp-hom-Wide-Subcategory : {x y : obj-Wide-Subcategory C P} (f : hom-Wide-Subcategory C P x y) → comp-hom-Wide-Subcategory (id-hom-Wide-Subcategory) f = f left-unit-law-comp-hom-Wide-Subcategory = left-unit-law-comp-hom-Wide-Subprecategory (precategory-Category C) P right-unit-law-comp-hom-Wide-Subcategory : {x y : obj-Wide-Subcategory C P} (f : hom-Wide-Subcategory C P x y) → comp-hom-Wide-Subcategory f (id-hom-Wide-Subcategory) = f right-unit-law-comp-hom-Wide-Subcategory = right-unit-law-comp-hom-Wide-Subprecategory (precategory-Category C) P associative-composition-operation-Wide-Subcategory : associative-composition-operation-binary-family-Set ( hom-set-Wide-Subcategory) associative-composition-operation-Wide-Subcategory = associative-composition-operation-Wide-Subprecategory ( precategory-Category C) P is-unital-composition-operation-Wide-Subcategory : is-unital-composition-operation-binary-family-Set ( hom-set-Wide-Subcategory) ( comp-hom-Wide-Subcategory) is-unital-composition-operation-Wide-Subcategory = is-unital-composition-operation-Wide-Subprecategory ( precategory-Category C) P precategory-Wide-Subcategory : Precategory l1 (l2 ⊔ l3) precategory-Wide-Subcategory = precategory-Wide-Subprecategory (precategory-Category C) P
The underlying category of a wide subcategory
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (P : Wide-Subcategory l3 C) where category-Wide-Subcategory : Category l1 (l2 ⊔ l3) pr1 category-Wide-Subcategory = precategory-Wide-Subcategory C P pr2 category-Wide-Subcategory = is-category-is-category-Wide-Subprecategory ( precategory-Category C) P (is-category-Category C)
The inclusion functor of a wide subcategory
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (P : Wide-Subcategory l3 C) where inclusion-map-Wide-Subcategory : map-Category (category-Wide-Subcategory C P) C inclusion-map-Wide-Subcategory = inclusion-map-Wide-Subprecategory (precategory-Category C) P is-functor-inclusion-Wide-Subcategory : is-functor-map-Category ( category-Wide-Subcategory C P) ( C) ( inclusion-map-Wide-Subcategory) is-functor-inclusion-Wide-Subcategory = is-functor-inclusion-Wide-Subprecategory (precategory-Category C) P inclusion-Wide-Subcategory : functor-Category (category-Wide-Subcategory C P) C inclusion-Wide-Subcategory = inclusion-Wide-Subprecategory (precategory-Category C) P
Properties
The inclusion functor is faithful and an equivalence on objects
module _ {l1 l2 l3 : Level} (C : Category l1 l2) (P : Wide-Subcategory l3 C) where is-faithful-inclusion-Wide-Subcategory : is-faithful-functor-Precategory ( precategory-Wide-Subcategory C P) ( precategory-Category C) ( inclusion-Wide-Subcategory C P) is-faithful-inclusion-Wide-Subcategory = is-faithful-inclusion-Wide-Subprecategory (precategory-Category C) P is-equiv-obj-inclusion-Wide-Subcategory : is-equiv ( obj-functor-Category ( category-Wide-Subcategory C P) ( C) ( inclusion-Wide-Subcategory C P)) is-equiv-obj-inclusion-Wide-Subcategory = is-equiv-obj-inclusion-Wide-Subprecategory (precategory-Category C) P
The inclusion functor is pseudomonic
This remains to be formalized. This is a consequence of repeleteness.
External links
- Wide subcategories at 1lab
- wide subcategory at Lab
Recent changes
- 2024-03-11. Fredrik Bakke. Refactor category theory to use strictly involutive identity types (#1052).
- 2024-02-06. Fredrik Bakke. Rename
(co)prod
to(co)product
(#1017). - 2024-01-27. Egbert Rijke. Fix "The predicate of" section headers (#1010).
- 2023-11-27. Fredrik Bakke. Refactor categories to carry a bidirectional witness of associativity (#945).
- 2023-11-09. Fredrik Bakke. Typeset
nlab
as$n$Lab
(#911).