Concrete group actions
Content created by Egbert Rijke, Fredrik Bakke and Jonathan Prieto-Cubides.
Created on 2022-03-12.
Last modified on 2023-09-15.
module group-theory.concrete-group-actions where
Imports
open import foundation.function-types open import foundation.sets open import foundation.transport-along-identifications open import foundation.universe-levels open import group-theory.concrete-groups
Idea
Given a concrete group G
, a concrete
action of G
on a type is defined to be a type family over BG
. Given a type
family X
over BG
, the type being acted on is the type X *
, and the action
of G
on X *
is given by transport.
Definition
module _ {l1 : Level} (l2 : Level) (G : Concrete-Group l1) where action-Concrete-Group : UU (l1 ⊔ lsuc l2) action-Concrete-Group = classifying-type-Concrete-Group G → Set l2 module _ {l1 l2 : Level} (G : Concrete-Group l1) (X : action-Concrete-Group l2 G) where set-action-Concrete-Group : Set l2 set-action-Concrete-Group = X (shape-Concrete-Group G) type-action-Concrete-Group : UU l2 type-action-Concrete-Group = type-Set set-action-Concrete-Group is-set-type-action-Concrete-Group : is-set type-action-Concrete-Group is-set-type-action-Concrete-Group = is-set-type-Set set-action-Concrete-Group mul-action-Concrete-Group : type-Concrete-Group G → type-action-Concrete-Group → type-action-Concrete-Group mul-action-Concrete-Group g x = tr (type-Set ∘ X) g x
Recent changes
- 2023-09-15. Fredrik Bakke. Define representations of monoids (#765).
- 2023-09-11. Fredrik Bakke. Transport along and action on equivalences (#706).
- 2023-06-10. Egbert Rijke. cleaning up transport and dependent identifications files (#650).
- 2023-06-10. Egbert Rijke and Fredrik Bakke. Cleaning up synthetic homotopy theory (#649).
- 2023-03-14. Fredrik Bakke. Remove all unused imports (#502).